Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.04474
Cited By
Generalization Properties of Learning with Random Features
14 February 2016
Alessandro Rudi
Lorenzo Rosasco
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization Properties of Learning with Random Features"
50 / 87 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
42
0
0
13 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
210
0
0
06 May 2025
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
36
1
0
23 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
62
0
0
24 Aug 2024
Deep Learning without Global Optimization by Random Fourier Neural Networks
Owen Davis
Gianluca Geraci
Mohammad Motamed
BDL
62
0
0
16 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
48
5
0
30 Jun 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
44
4
0
14 Jun 2024
Deep Sketched Output Kernel Regression for Structured Prediction
T. Ahmad
Junjie Yang
Pierre Laforgue
Florence dÁlché-Buc
UQCV
47
0
0
13 Jun 2024
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Licong Lin
Jingfeng Wu
Sham Kakade
Peter L. Bartlett
Jason D. Lee
LRM
49
15
0
12 Jun 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
56
1
0
21 Feb 2024
Random features models: a way to study the success of naive imputation
Alexis Ayme
Claire Boyer Lpsm
Aymeric Dieuleveut
Erwan Scornet
30
3
0
06 Feb 2024
Potential and limitations of random Fourier features for dequantizing quantum machine learning
R. Sweke
Erik Recio
Sofiene Jerbi
Elies Gil-Fuster
Bryce Fuller
Jens Eisert
Johannes Jakob Meyer
35
12
0
20 Sep 2023
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
Lukas Gonon
A. Jacquier
43
13
0
24 Jul 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
35
6
0
20 Jul 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
29
12
0
26 May 2023
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
40
4
0
23 May 2023
Distributed Gradient Descent for Functional Learning
Zhan Yu
Jun Fan
Zhongjie Shi
Ding-Xuan Zhou
23
1
0
12 May 2023
Error analysis of regularized trigonometric linear regression with unbounded sampling: a statistical learning viewpoint
Anna Scampicchio
Elena Arcari
Melanie Zeilinger
27
1
0
16 Mar 2023
When is Importance Weighting Correction Needed for Covariate Shift Adaptation?
Davit Gogolashvili
Matteo Zecchin
Motonobu Kanagawa
Marios Kountouris
Maurizio Filippone
32
7
0
07 Mar 2023
On the relationship between multivariate splines and infinitely-wide neural networks
Francis R. Bach
8
3
0
07 Feb 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
15
1
0
17 Jan 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
26
4
0
28 Dec 2022
Random Feature Models for Learning Interacting Dynamical Systems
Yuxuan Liu
S. McCalla
Hayden Schaeffer
31
12
0
11 Dec 2022
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte
Alessandro Rudi
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
29
6
0
16 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
30
48
0
16 Nov 2022
SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics
Esha Saha
L. Ho
Giang Tran
38
5
0
11 Nov 2022
RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
Mateus P. Otto
Rafael Izbicki
39
1
0
11 Nov 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Importance Weighting Correction of Regularized Least-Squares for Covariate and Target Shifts
Davit Gogolashvili
OOD
20
1
0
18 Oct 2022
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
52
1
0
01 Oct 2022
Efficient learning of nonlinear prediction models with time-series privileged information
Bastian Jung
Fredrik D. Johansson
AI4TS
45
5
0
15 Sep 2022
Fast Kernel Methods for Generic Lipschitz Losses via
p
p
p
-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Promit Ghosal
Srinath Mahankali
Yihang Sun
MLT
29
4
0
24 May 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
34
3
0
22 May 2022
Concentration of Random Feature Matrices in High-Dimensions
Zhijun Chen
Hayden Schaeffer
Rachel A. Ward
29
6
0
14 Apr 2022
SRMD: Sparse Random Mode Decomposition
Nicholas Richardson
Hayden Schaeffer
Giang Tran
29
11
0
12 Apr 2022
Learning new physics efficiently with nonparametric methods
Marco Letizia
Gianvito Losapio
Marco Rando
Gaia Grosso
A. Wulzer
M. Pierini
M. Zanetti
Lorenzo Rosasco
OOD
31
31
0
05 Apr 2022
Information Theory with Kernel Methods
Francis R. Bach
32
40
0
17 Feb 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
45
14
0
06 Feb 2022
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
M. Scetbon
Laurent Meunier
Yaniv Romano
28
10
0
28 Oct 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
39
12
0
21 Oct 2021
Sampling from Arbitrary Functions via PSD Models
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
24
10
0
20 Oct 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
40
18
0
20 Sep 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
26
35
0
14 Jun 2021
Statistical Optimality and Computational Efficiency of Nyström Kernel PCA
Nicholas Sterge
Bharath K. Sriperumbudur
35
8
0
19 May 2021
Random Features for the Neural Tangent Kernel
Insu Han
H. Avron
N. Shoham
Chaewon Kim
Jinwoo Shin
27
9
0
03 Apr 2021
Generalization Bounds for Sparse Random Feature Expansions
Abolfazl Hashemi
Hayden Schaeffer
Robert Shi
Ufuk Topcu
Giang Tran
Rachel A. Ward
MLT
42
41
0
04 Mar 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
55
89
0
25 Feb 2021
Denoising Score Matching with Random Fourier Features
Olga Tsymboi
Yermek Kapushev
Evgeny Burnaev
Ivan Oseledets
39
1
0
13 Jan 2021
Probabilistic Load Forecasting Based on Adaptive Online Learning
Verónica Álvarez
Santiago Mazuelas
Jose A. Lozano
16
61
0
30 Nov 2020
1
2
Next