ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06872
  4. Cited By
Principal Component Projection Without Principal Component Analysis
v1v2 (latest)

Principal Component Projection Without Principal Component Analysis

22 February 2016
Roy Frostig
Cameron Musco
Christopher Musco
Aaron Sidford
ArXiv (abs)PDFHTML

Papers citing "Principal Component Projection Without Principal Component Analysis"

11 / 11 papers shown
Title
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning
Michal Dereziñski
Christopher Musco
Jiaming Yang
121
2
0
09 May 2024
A Sublinear Adversarial Training Algorithm
A Sublinear Adversarial Training Algorithm
Yeqi Gao
Lianke Qin
Zhao Song
Yitan Wang
GAN
77
25
0
10 Aug 2022
Over-parameterized Adversarial Training: An Analysis Overcoming the
  Curse of Dimensionality
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
127
53
0
16 Feb 2020
A Universal Sampling Method for Reconstructing Signals with Simple
  Fourier Transforms
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
61
49
0
20 Dec 2018
Sketching for Principal Component Regression
Sketching for Principal Component Regression
Liron Mor Yosef
H. Avron
71
8
0
07 Mar 2018
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and
  Hardness
Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and Hardness
Cameron Musco
Praneeth Netrapalli
Aaron Sidford
Shashanka Ubaru
David P. Woodruff
162
36
0
13 Apr 2017
Fast estimation of approximate matrix ranks using spectral densities
Fast estimation of approximate matrix ranks using spectral densities
Shashanka Ubaru
Y. Saad
A. Seghouane
52
23
0
19 Aug 2016
Faster Principal Component Regression and Stable Matrix Chebyshev
  Approximation
Faster Principal Component Regression and Stable Matrix Chebyshev Approximation
Zeyuan Allen-Zhu
Yuanzhi Li
76
20
0
16 Aug 2016
Doubly Accelerated Methods for Faster CCA and Generalized
  Eigendecomposition
Doubly Accelerated Methods for Faster CCA and Generalized Eigendecomposition
Zeyuan Allen-Zhu
Yuanzhi Li
87
51
0
20 Jul 2016
Efficient Globally Convergent Stochastic Optimization for Canonical
  Correlation Analysis
Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis
Weiran Wang
Jialei Wang
Dan Garber
Nathan Srebro
97
31
0
07 Apr 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
138
582
0
18 Mar 2016
1