ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07043
  4. Cited By
Auditing Black-box Models for Indirect Influence

Auditing Black-box Models for Indirect Influence

23 February 2016
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
    TDI
    MLAU
ArXivPDFHTML

Papers citing "Auditing Black-box Models for Indirect Influence"

10 / 10 papers shown
Title
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
Puheng Li
James Zou
Linjun Zhang
FaML
286
4
0
13 Mar 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
98
16
0
10 Jan 2025
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaML
FAtt
126
1
0
29 Oct 2024
Inherent Trade-Offs in the Fair Determination of Risk Scores
Inherent Trade-Offs in the Fair Determination of Risk Scores
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
84
1,762
0
19 Sep 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
582
16,828
0
16 Feb 2016
Interpretable Classification Models for Recidivism Prediction
Interpretable Classification Models for Recidivism Prediction
J. Zeng
Berk Ustun
Cynthia Rudin
FaML
51
247
0
26 Mar 2015
Certifying and removing disparate impact
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
129
1,978
0
11 Dec 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
321
15,825
0
12 Nov 2013
Supersparse Linear Integer Models for Interpretable Classification
Supersparse Linear Integer Models for Interpretable Classification
Berk Ustun
Stefano Tracà
Cynthia Rudin
52
43
0
27 Jun 2013
Building high-level features using large scale unsupervised learning
Building high-level features using large scale unsupervised learning
Quoc V. Le
MarcÁurelio Ranzato
R. Monga
M. Devin
Kai Chen
G. Corrado
J. Dean
A. Ng
SSL
OffRL
CVBM
90
2,268
0
29 Dec 2011
1