ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07527
  4. Cited By
Differentiation of the Cholesky decomposition

Differentiation of the Cholesky decomposition

24 February 2016
Iain Murray
ArXivPDFHTML

Papers citing "Differentiation of the Cholesky decomposition"

10 / 10 papers shown
Title
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Yue Song
N. Sebe
Wei Wang
26
6
0
11 Dec 2022
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Yue Song
N. Sebe
Wei Wang
19
8
0
05 Jul 2022
Depth Completion via Deep Basis Fitting
Depth Completion via Deep Basis Fitting
Chao Qu
Ty Nguyen
Camillo J Taylor
35
38
0
21 Dec 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia
  Language
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
13
24
0
21 Dec 2018
Eigendecomposition-free Training of Deep Networks with Zero
  Eigenvalue-based Losses
Eigendecomposition-free Training of Deep Networks with Zero Eigenvalue-based Losses
Zheng Dang
K. M. Yi
Yinlin Hu
Fei Wang
Pascal Fua
Mathieu Salzmann
26
48
0
21 Mar 2018
Auto-Differentiating Linear Algebra
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
17
38
0
24 Oct 2017
End-to-end representation learning for Correlation Filter based tracking
End-to-end representation learning for Correlation Filter based tracking
Jack Valmadre
Luca Bertinetto
João F. Henriques
Andrea Vedaldi
Philip Torr
36
1,396
0
20 Apr 2017
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
14
657
0
27 Oct 2016
Asymptotically exact inference in differentiable generative models
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
21
33
0
25 May 2016
1