ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.08952
  4. Cited By
Representation of linguistic form and function in recurrent neural
  networks

Representation of linguistic form and function in recurrent neural networks

29 February 2016
Ákos Kádár
Grzegorz Chrupała
A. Alishahi
ArXivPDFHTML

Papers citing "Representation of linguistic form and function in recurrent neural networks"

21 / 21 papers shown
Title
CAVE: Controllable Authorship Verification Explanations
CAVE: Controllable Authorship Verification Explanations
Sahana Ramnath
Kartik Pandey
Elizabeth Boschee
Xiang Ren
59
1
0
24 Jun 2024
Morphosyntactic probing of multilingual BERT models
Morphosyntactic probing of multilingual BERT models
Judit Ács
Endre Hamerlik
Roy Schwartz
Noah A. Smith
András Kornai
25
9
0
09 Jun 2023
Explaining black box text modules in natural language with language
  models
Explaining black box text modules in natural language with language models
Chandan Singh
Aliyah R. Hsu
Richard Antonello
Shailee Jain
Alexander G. Huth
Bin-Xia Yu
Jianfeng Gao
MILM
16
46
0
17 May 2023
On the Explainability of Natural Language Processing Deep Models
On the Explainability of Natural Language Processing Deep Models
Julia El Zini
M. Awad
25
82
0
13 Oct 2022
Explainability in Graph Neural Networks: An Experimental Survey
Explainability in Graph Neural Networks: An Experimental Survey
Peibo Li
Yixing Yang
M. Pagnucco
Yang Song
13
31
0
17 Mar 2022
UNIREX: A Unified Learning Framework for Language Model Rationale
  Extraction
UNIREX: A Unified Learning Framework for Language Model Rationale Extraction
Aaron Chan
Maziar Sanjabi
Lambert Mathias
L Tan
Shaoliang Nie
Xiaochang Peng
Xiang Ren
Hamed Firooz
34
41
0
16 Dec 2021
Interpreting Deep Learning Models in Natural Language Processing: A
  Review
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
17
44
0
20 Oct 2021
Neuron-level Interpretation of Deep NLP Models: A Survey
Neuron-level Interpretation of Deep NLP Models: A Survey
Hassan Sajjad
Nadir Durrani
Fahim Dalvi
MILM
AI4CE
22
79
0
30 Aug 2021
How recurrent networks implement contextual processing in sentiment
  analysis
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
14
22
0
17 Apr 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
30
300
0
08 Jan 2020
RNNs Implicitly Implement Tensor Product Representations
RNNs Implicitly Implement Tensor Product Representations
R. Thomas McCoy
Tal Linzen
Ewan Dunbar
P. Smolensky
33
54
0
20 Dec 2018
The Best of Both Worlds: Lexical Resources To Improve Low-Resource
  Part-of-Speech Tagging
The Best of Both Worlds: Lexical Resources To Improve Low-Resource Part-of-Speech Tagging
Barbara Plank
Sigrid Klerke
Zeljko Agic
NAI
39
4
0
21 Nov 2018
Pre-gen metrics: Predicting caption quality metrics without generating
  captions
Pre-gen metrics: Predicting caption quality metrics without generating captions
Marc Tanti
Albert Gatt
K. Camilleri
14
2
0
12 Oct 2018
Assessing Composition in Sentence Vector Representations
Assessing Composition in Sentence Vector Representations
Allyson Ettinger
Ahmed Elgohary
C. Phillips
Philip Resnik
CoGe
6
78
0
11 Sep 2018
Response Characterization for Auditing Cell Dynamics in Long Short-term
  Memory Networks
Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks
Ramin M. Hasani
Alexander Amini
Mathias Lechner
Felix Naser
Radu Grosu
Daniela Rus
18
25
0
11 Sep 2018
Techniques for Interpretable Machine Learning
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
22
1,071
0
31 Jul 2018
SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines
SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines
Roy Schwartz
Sam Thomson
Noah A. Smith
23
24
0
15 May 2018
What do Neural Machine Translation Models Learn about Morphology?
What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov
Nadir Durrani
Fahim Dalvi
Hassan Sajjad
James R. Glass
30
410
0
11 Apr 2017
Representations of language in a model of visually grounded speech
  signal
Representations of language in a model of visually grounded speech signal
Grzegorz Chrupała
Lieke Gelderloos
A. Alishahi
14
131
0
07 Feb 2017
Memory Visualization for Gated Recurrent Neural Networks in Speech
  Recognition
Memory Visualization for Gated Recurrent Neural Networks in Speech Recognition
Zhiyuan Tang
Ying Shi
Dong Wang
Yang Feng
Shiyue Zhang
6
53
0
28 Sep 2016
LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in
  Recurrent Neural Networks
LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
Hendrik Strobelt
Sebastian Gehrmann
Hanspeter Pfister
Alexander M. Rush
HAI
18
83
0
23 Jun 2016
1