Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.04166
Cited By
The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting
14 March 2016
Z. Botev
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting"
50 / 51 papers shown
Title
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression
Filippo Ascolani
Giacomo Zanella
119
0
0
20 May 2025
Exact MCMC for Intractable Proposals
Dwija Kakkad
Dootika Vats
68
0
0
14 Oct 2024
Analysing symbolic data by pseudo-marginal methods
Yu Yang
M. Quiroz
B. Beranger
Robert Kohn
Scott A. Sisson
55
0
0
08 Aug 2024
Scalable expectation propagation for generalized linear models
Niccolò Anceschi
A. Fasano
Beatrice Franzolini
Giovanni Rebaudo
91
0
0
02 Jul 2024
Scalable Sampling of Truncated Multivariate Normals Using Sequential Nearest-Neighbor Approximation
Jian Cao
Matthias Katzfuss
56
0
0
25 Jun 2024
Parallel Approximations for High-Dimensional Multivariate Normal Probability Computation in Confidence Region Detection Applications
Xiran Zhang
Sameh Abdulah
JIAN-PENG Cao
Hatem Ltaief
Ying Sun
M. Genton
David E. Keyes
40
1
0
18 May 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
92
3
0
28 Feb 2024
Spectral gap bounds for reversible hybrid Gibbs chains
Qian Qin
Nianqiao Ju
Guanyang Wang
83
5
0
20 Dec 2023
Linear-Cost Vecchia Approximation of Multivariate Normal Probabilities
Jian Cao
Matthias Katzfuss
71
1
0
15 Nov 2023
An Easy Rejection Sampling Baseline via Gradient Refined Proposals
Edward Raff
Mark McLean
James Holt
57
0
0
30 Sep 2023
Expectation propagation for the smoothing distribution in dynamic probit
Niccolò Anceschi
A. Fasano
Giovanni Rebaudo
62
0
0
04 Sep 2023
Characterizing Data Point Vulnerability via Average-Case Robustness
Tessa Han
Suraj Srinivas
Himabindu Lakkaraju
AAML
OOD
112
1
0
26 Jul 2023
Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning
Jungtaek Kim
86
1
0
24 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
174
5
0
17 May 2023
SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces
Masaki Adachi
Satoshi Hayakawa
Saad Hamid
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
88
7
0
27 Jan 2023
hdtg: An R package for high-dimensional truncated normal simulation
Zhenyu Zhang
A. Chin
A. Nishimura
M. Suchard
37
4
0
23 Sep 2022
An extension of the Unified Skew-Normal family of distributions and application to Bayesian binary regression
P. Onorati
B. Liseo
84
3
0
07 Sep 2022
A Parallel Technique for Multi-objective Bayesian Global Optimization: Using a Batch Selection of Probability of Improvement
Kaifeng Yang
Guozhi Dong
M. Affenzeller
69
7
0
07 Aug 2022
On Controller Tuning with Time-Varying Bayesian Optimization
Paul Brunzema
Alexander von Rohr
Sebastian Trimpe
79
17
0
22 Jul 2022
Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach
Syrine Belakaria
J. Doppa
Nicolò Fusi
Rishit Sheth
106
7
0
25 Jun 2022
Bayesian conjugacy in probit, tobit, multinomial probit and extensions: A review and new results
Niccolò Anceschi
A. Fasano
Daniele Durante
Giacomo Zanella
85
18
0
16 Jun 2022
Semi-Parametric Contextual Bandits with Graph-Laplacian Regularization
Y. Choi
Gi-Soo Kim
Seung-Jin Paik
M. Paik
64
6
0
17 May 2022
Efficient CDF Approximations for Normalizing Flows
Chandramouli Shama Sastry
Andreas M. Lehrmann
Marcus A. Brubaker
A. Radovic
28
1
0
23 Feb 2022
Warped Dynamic Linear Models for Time Series of Counts
Brian King
Daniel R. Kowal
AI4TS
126
5
0
27 Oct 2021
Approximation Methods for Mixed Models with Probit Link Functions
Benjamin Christoffersen
Mark Clements
Hedvig Kjellström
K. Humphreys
20
0
0
27 Oct 2021
Semiparametric discrete data regression with Monte Carlo inference and prediction
Daniel R. Kowal
Bo-Hong Wu
126
3
0
23 Oct 2021
Bayesian inference on high-dimensional multivariate binary responses
Antik Chakraborty
Rihui Ou
David B. Dunson
36
4
0
03 Jun 2021
Variational Inference for the Smoothing Distribution in Dynamic Probit Models
A. Fasano
Giovanni Rebaudo
55
4
0
15 Apr 2021
A Hybrid Approximation to the Marginal Likelihood
Eric Chuu
D. Pati
A. Bhattacharya
44
2
0
24 Feb 2021
Asymptotically Exact and Fast Gaussian Copula Models for Imputation of Mixed Data Types
Benjamin Christoffersen
M. Clements
K. Humphreys
Hedvig Kjellström
70
3
0
04 Feb 2021
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
67
15
0
12 Dec 2020
Scalable computation of predictive probabilities in probit models with Gaussian process priors
JIAN-PENG Cao
Daniele Durante
M. Genton
91
11
0
03 Sep 2020
A Class of Conjugate Priors for Multinomial Probit Models which Includes the Multivariate Normal One
A. Fasano
Daniele Durante
80
27
0
14 Jul 2020
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GP
AI4CE
110
107
0
16 Jun 2020
Skew Gaussian Processes for Classification
A. Benavoli
Dario Azzimonti
Dario Piga
GP
63
19
0
26 May 2020
Interpretable Safety Validation for Autonomous Vehicles
Anthony Corso
Mykel J. Kochenderfer
75
24
0
14 Apr 2020
Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student-
t
t
t
Probabilities
JIAN-PENG Cao
M. Genton
David E. Keyes
G. Turkiyyah
66
13
0
25 Mar 2020
Scalable and Accurate Variational Bayes for High-Dimensional Binary Regression Models
A. Fasano
Daniele Durante
Giacomo Zanella
99
32
0
15 Nov 2019
Integrals over Gaussians under Linear Domain Constraints
A. Gessner
Oindrila Kanjilal
Philipp Hennig
69
30
0
21 Oct 2019
An Efficient Sampling Algorithm for Non-smooth Composite Potentials
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
66
24
0
01 Oct 2019
Fast and Exact Simulation of Multivariate Normal and Wishart Random Variables with Box Constraints
Hillary Koch
Gregory P. Bopp
55
3
0
28 Jun 2019
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints
A. F. López-Lopera
S. T. John
N. Durrande
85
16
0
28 Feb 2019
Approximating Gaussian Process Emulators with Linear Inequality Constraints and Noisy Observations via MC and MCMC
A. F. López-Lopera
François Bachoc
N. Durrande
Jérémy Rohmer
Déborah Idier
O. Roustant
35
12
0
15 Jan 2019
Gaussian processes with linear operator inequality constraints
C. Agrell
83
39
0
10 Jan 2019
The Soft Multivariate Truncated Normal Distribution with Applications to Bayesian Constrained Estimation
Allyson Souris
A. Bhattacharya
D. Pati
20
3
0
24 Jul 2018
Bayesian Metabolic Flux Analysis reveals intracellular flux couplings
Markus Heinonen
Maria Osmala
Henrik Mannerstrom
J. Wallenius
Samuel Kaski
Juho Rousu
Harri Lähdesmäki
43
22
0
18 Apr 2018
Conjugate Bayes for probit regression via unified skew-normal distributions
Daniele Durante
84
58
0
26 Feb 2018
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
François Bachoc
N. Durrande
O. Roustant
140
67
0
20 Oct 2017
Bayesian Optimization with Shape Constraints
Michael Jauch
Víctor Pena
47
11
0
28 Dec 2016
Flexible Bayesian Quantile Regression in Ordinal Models
M. A. Rahman
Shubham Karnawat
100
15
0
02 Sep 2016
1
2
Next