Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.04054
Cited By
Optimal Rates For Regularization Of Statistical Inverse Learning Problems
14 April 2016
Gilles Blanchard
Nicole Mücke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal Rates For Regularization Of Statistical Inverse Learning Problems"
50 / 98 papers shown
Title
Learning Curves of Stochastic Gradient Descent in Kernel Regression
Haihan Zhang
Weicheng Lin
Yuanshi Liu
Cong Fang
40
0
0
28 May 2025
Regularized least squares learning with heavy-tailed noise is minimax optimal
Mattes Mollenhauer
Nicole Mücke
Dimitri Meunier
Arthur Gretton
91
0
0
20 May 2025
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
111
0
0
29 Apr 2025
A Lipschitz spaces view of infinitely wide shallow neural networks
Francesca Bartolucci
Marcello Carioni
José A. Iglesias
Yury Korolev
Emanuele Naldi
Stefano Vigogna
112
1
0
18 Oct 2024
Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
Weichun Xia
Jiaxin Jiang
Lei Shi
54
0
0
18 Oct 2024
Distributed Learning with Discretely Observed Functional Data
Jiading Liu
Lei Shi
58
0
0
03 Oct 2024
Gaussian kernel expansion with basis functions uniformly bounded in
L
∞
\mathcal{L}_{\infty}
L
∞
M. Bisiacco
G. Pillonetto
64
0
0
02 Oct 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
127
5
0
23 May 2024
On the Saturation Effect of Kernel Ridge Regression
Yicheng Li
Haobo Zhang
Qian Lin
164
21
0
15 May 2024
Improve Generalization Ability of Deep Wide Residual Network with A Suitable Scaling Factor
Songtao Tian
Zixiong Yu
50
1
0
07 Mar 2024
Spectral Algorithms on Manifolds through Diffusion
Weichun Xia
Lei Shi
49
1
0
06 Mar 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
119
2
0
21 Feb 2024
Early stopping by correlating online indicators in neural networks
M. Ferro
V. Darriba
Francisco J. Ribadas Pena
Jesús Vilares
48
9
0
04 Feb 2024
Generalization Error Curves for Analytic Spectral Algorithms under Power-law Decay
Yicheng Li
Weiye Gan
Zuoqiang Shi
Qian Lin
65
6
0
03 Jan 2024
Statistical inverse learning problems with random observations
Abhishake
T. Helin
Nicole Mucke
66
1
0
23 Dec 2023
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
62
0
0
21 Dec 2023
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
143
8
0
12 Dec 2023
Adaptive Parameter Selection for Kernel Ridge Regression
Shao-Bo Lin
26
3
0
10 Dec 2023
A statistical perspective on algorithm unrolling models for inverse problems
Yves Atchadé
Xinru Liu
Qiuyun Zhu
55
0
0
10 Nov 2023
Improved Convergence Rate of Nested Simulation with LSE on Sieve
Ruoxue Liu
Liang Ding
Wei Cao
Lu Zou
40
0
0
18 Oct 2023
Kernel-based function learning in dynamic and non stationary environments
Alberto Giaretta
M. Bisiacco
G. Pillonetto
21
2
0
04 Oct 2023
How many Neurons do we need? A refined Analysis for Shallow Networks trained with Gradient Descent
Mike Nguyen
Nicole Mücke
MLT
84
6
0
14 Sep 2023
Random feature approximation for general spectral methods
Mike Nguyen
Nicole Mücke
60
1
0
29 Aug 2023
Adaptive learning of density ratios in RKHS
Werner Zellinger
S. Kindermann
S. Pereverzyev
69
5
0
30 Jul 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
180
7
0
20 Jul 2023
Local Risk Bounds for Statistical Aggregation
Jaouad Mourtada
Tomas Vavskevivcius
Nikita Zhivotovskiy
66
1
0
29 Jun 2023
Generalization Ability of Wide Residual Networks
Jianfa Lai
Zixiong Yu
Songtao Tian
Qian Lin
63
4
0
29 May 2023
On the Optimality of Misspecified Kernel Ridge Regression
Haobo Zhang
Yicheng Li
Weihao Lu
Qian Lin
122
14
0
12 May 2023
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
74
6
0
05 May 2023
Optimality of Robust Online Learning
Zheng-Chu Guo
A. Christmann
Lei Shi
58
10
0
20 Apr 2023
Kernel interpolation generalizes poorly
Yicheng Li
Haobo Zhang
Qian Lin
83
11
0
28 Mar 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
79
18
0
27 Mar 2023
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
57
2
0
08 Mar 2023
Generalization Ability of Wide Neural Networks on
R
\mathbb{R}
R
Jianfa Lai
Manyun Xu
Rui Chen
Qi-Rong Lin
92
23
0
12 Feb 2023
Statistical Learning with Sublinear Regret of Propagator Models
Eyal Neuman
Yufei Zhang
106
7
0
12 Jan 2023
A note on the prediction error of principal component regression in high dimensions
L. Hucker
Martin Wahl
88
6
0
09 Dec 2022
Least squares approximations in linear statistical inverse learning problems
T. Helin
45
2
0
22 Nov 2022
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
92
12
0
20 Nov 2022
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
96
26
0
16 Nov 2022
Importance Weighting Correction of Regularized Least-Squares for Covariate and Target Shifts
Davit Gogolashvili
OOD
63
1
0
18 Oct 2022
Statistical Inverse Problems in Hilbert Scales
Abhishake Rastogi
31
3
0
28 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
97
52
0
02 Aug 2022
Functional linear and single-index models: A unified approach via Gaussian Stein identity
Krishnakumar Balasubramanian
Hans-Georg Müller
Bharath K. Sriperumbudur
63
6
0
08 Jun 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
107
8
0
15 May 2022
Optimal Learning Rates for Regularized Least-Squares with a Fourier Capacity Condition
Prem M. Talwai
D. Simchi-Levi
35
2
0
16 Apr 2022
An elementary analysis of ridge regression with random design
Jaouad Mourtada
Lorenzo Rosasco
82
11
0
16 Mar 2022
On the Benefits of Large Learning Rates for Kernel Methods
Gaspard Beugnot
Julien Mairal
Alessandro Rudi
82
11
0
28 Feb 2022
Smooth Nested Simulation: Bridging Cubic and Square Root Convergence Rates in High Dimensions
Wei Cao
Yanyuan Wang
Xiaowei Zhang
46
5
0
09 Jan 2022
Shearlet-based regularization in statistical inverse learning with an application to X-ray tomography
T. Bubba
Luca Ratti
59
3
0
23 Dec 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
72
18
0
23 Oct 2021
1
2
Next