Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.04054
Cited By
Optimal Rates For Regularization Of Statistical Inverse Learning Problems
14 April 2016
Gilles Blanchard
Nicole Mücke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal Rates For Regularization Of Statistical Inverse Learning Problems"
48 / 98 papers shown
Title
Data splitting improves statistical performance in overparametrized regimes
Nicole Mücke
Enrico Reiss
Jonas Rungenhagen
Markus Klein
60
8
0
21 Oct 2021
Comparing Classes of Estimators: When does Gradient Descent Beat Ridge Regression in Linear Models?
Dominic Richards
Yan Sun
Patrick Rebeschini
74
3
0
26 Aug 2021
Beyond Tikhonov: Faster Learning with Self-Concordant Losses via Iterative Regularization
Gaspard Beugnot
Julien Mairal
Alessandro Rudi
55
1
0
16 Jun 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
Ernesto De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
76
30
0
11 Jun 2021
From inexact optimization to learning via gradient concentration
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
88
5
0
09 Jun 2021
Learning particle swarming models from data with Gaussian processes
Jinchao Feng
Charles Kulick
Yunxiang Ren
Sui Tang
79
6
0
04 Jun 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
108
24
0
05 May 2021
Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
Wei Cao
Bing-Yi Jing
57
6
0
20 Apr 2021
Convex regularization in statistical inverse learning problems
T. Bubba
Martin Burger
T. Helin
Luca Ratti
56
10
0
18 Feb 2021
Online nonparametric regression with Sobolev kernels
O. Zadorozhnyi
Pierre Gaillard
Sébastien Gerchinovitz
Alessandro Rudi
47
4
0
06 Feb 2021
Nonparametric approximation of conditional expectation operators
Mattes Mollenhauer
P. Koltai
95
17
0
23 Dec 2020
Stochastic Gradient Descent Meets Distribution Regression
Nicole Mücke
62
5
0
24 Oct 2020
Decentralised Learning with Random Features and Distributed Gradient Descent
Dominic Richards
Patrick Rebeschini
Lorenzo Rosasco
67
18
0
01 Jul 2020
Optimal Rates of Distributed Regression with Imperfect Kernels
Hongwei Sun
Qiang Wu
30
15
0
30 Jun 2020
Optimal Rates for Averaged Stochastic Gradient Descent under Neural Tangent Kernel Regime
Atsushi Nitanda
Taiji Suzuki
91
41
0
22 Jun 2020
Stochastic Gradient Descent in Hilbert Scales: Smoothness, Preconditioning and Earlier Stopping
Nicole Mücke
Enrico Reiss
47
7
0
18 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
Ernesto De Vito
Lorenzo Rosasco
91
8
0
17 Jun 2020
Construction and Monte Carlo estimation of wavelet frames generated by a reproducing kernel
Ernesto De Vito
Ž. Kereta
Valeriya Naumova
Lorenzo Rosasco
Stefano Vigogna
74
3
0
17 Jun 2020
Sample complexity and effective dimension for regression on manifolds
Andrew D. McRae
Justin Romberg
Mark A. Davenport
106
8
0
13 Jun 2020
Lower bounds for invariant statistical models with applications to principal component analysis
Martin Wahl
32
5
0
14 May 2020
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
Alain Celisse
Martin Wahl
65
18
0
17 Apr 2020
A Spectral Analysis of Dot-product Kernels
M. Scetbon
Zaïd Harchaoui
419
2
0
28 Feb 2020
Inverse learning in Hilbert scales
Abhishake Rastogi
Peter Mathé
23
6
0
24 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
124
84
0
10 Feb 2020
Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems
Abhishake Rastogi
58
5
0
01 Feb 2020
On the Improved Rates of Convergence for Matérn-type Kernel Ridge Regression, with Application to Calibration of Computer Models
Rui Tuo
Yan Wang
C. F. Jeff Wu
67
28
0
01 Jan 2020
Implicit Regularization of Accelerated Methods in Hilbert Spaces
Nicolò Pagliana
Lorenzo Rosasco
103
18
0
30 May 2019
Lepskii Principle in Supervised Learning
Gilles Blanchard
Peter Mathé
Nicole Mücke
55
12
0
26 May 2019
Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up
Dominic Richards
Patrick Rebeschini
69
13
0
08 May 2019
Beating SGD Saturation with Tail-Averaging and Minibatching
Nicole Mücke
Gergely Neu
Lorenzo Rosasco
106
37
0
22 Feb 2019
Convergence analysis of Tikhonov regularization for non-linear statistical inverse learning problems
Abhishake Rastogi
Gilles Blanchard
Peter Mathé
28
8
0
14 Feb 2019
The empirical process of residuals from an inverse regression
T. Kutta
N. Bissantz
J. Chown
Holger Dette
MedIm
49
2
0
09 Feb 2019
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance
Ulysse Marteau-Ferey
Dmitrii Ostrovskii
Francis R. Bach
Alessandro Rudi
201
52
0
08 Feb 2019
A note on the prediction error of principal component regression
Yana B. Feygin
115
6
0
07 Nov 2018
Kernel Conjugate Gradient Methods with Random Projections
Bailey Kacsmar
Douglas R Stinson
61
4
0
05 Nov 2018
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes
Loucas Pillaud-Vivien
Alessandro Rudi
Francis R. Bach
185
103
0
25 May 2018
Adaptivity for Regularized Kernel Methods by Lepskii's Principle
Nicole Mücke
17
3
0
15 Apr 2018
Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces
Junhong Lin
Volkan Cevher
32
9
0
12 Mar 2018
Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms
Junhong Lin
Volkan Cevher
82
34
0
22 Jan 2018
Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces
Junhong Lin
Alessandro Rudi
Lorenzo Rosasco
Volkan Cevher
185
99
0
20 Jan 2018
Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods
Gilles Blanchard
O. Zadorozhnyi
47
7
0
05 Dec 2017
Reducing training time by efficient localized kernel regression
Nicole Mücke
54
11
0
11 Jul 2017
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
Simon Fischer
Ingo Steinwart
206
152
0
23 Feb 2017
Kernel regression, minimax rates and effective dimensionality: beyond the regular case
Gilles Blanchard
Nicole Mücke
53
9
0
12 Nov 2016
Optimal rates for the regularized learning algorithms under general source condition
Abhishake Rastogi
Sivananthan Sampath
77
31
0
07 Nov 2016
Parallelizing Spectral Algorithms for Kernel Learning
Gilles Blanchard
Nicole Mücke
67
15
0
24 Oct 2016
Convergence rates of Kernel Conjugate Gradient for random design regression
Gilles Blanchard
Nicole E. Kramer
81
38
0
08 Jul 2016
Weighted Residuals for Very Deep Networks
Lee H. Dicker
Daniel J. Hsu
32
47
0
28 May 2016
Previous
1
2