ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.05263
  4. Cited By
Chained Gaussian Processes

Chained Gaussian Processes

18 April 2016
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
ArXiv (abs)PDFHTML

Papers citing "Chained Gaussian Processes"

18 / 18 papers shown
Title
Refined climatologies of future precipitation over High Mountain Asia using probabilistic ensemble learning
Refined climatologies of future precipitation over High Mountain Asia using probabilistic ensemble learning
K. Tazi
Sun Woo P. Kim
Marc Girona-Mata
R. Turner
AI4Cl
118
0
0
01 Jul 2025
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on
  Mobile Robot Observations
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on Mobile Robot Observations
Marvin Stuede
Moritz Schappler
31
3
0
14 Mar 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
87
16
0
02 Nov 2021
Modular Gaussian Processes for Transfer Learning
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
41
4
0
26 Oct 2021
Detecting Label Noise via Leave-One-Out Cross-Validation
Detecting Label Noise via Leave-One-Out Cross-Validation
Yu-Hang Tang
Yuanran Zhu
W. A. Jong
36
3
0
21 Mar 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
127
51
0
27 Dec 2020
Generalized Multi-Output Gaussian Process Censored Regression
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
Kasper Pryds Rolsted
Dario Pacino
Filipe Rodrigues
43
14
0
10 Sep 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian
  Processes
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
30
5
0
19 Feb 2020
Bayesian Quantile and Expectile Optimisation
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
62
21
0
12 Jan 2020
Continual Multi-task Gaussian Processes
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
74
13
0
31 Oct 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
53
34
0
22 Jun 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
  Periodic Functions
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
72
50
0
15 May 2019
Functional Principal Component Analysis for Extrapolating Multi-stream
  Longitudinal Data
Functional Principal Component Analysis for Extrapolating Multi-stream Longitudinal Data
Seokhyun Chung
Raed Al Kontar
113
9
0
09 Mar 2019
Scalable GAM using sparse variational Gaussian processes
Scalable GAM using sparse variational Gaussian processes
Vincent Adam
N. Durrande
S. T. John
33
2
0
28 Dec 2018
Non-linear process convolutions for multi-output Gaussian processes
Non-linear process convolutions for multi-output Gaussian processes
Mauricio A. Alvarez
W. Ward
Cristian Guarnizo Lemus
75
22
0
10 Oct 2018
Heterogeneous Multi-output Gaussian Process Prediction
Heterogeneous Multi-output Gaussian Process Prediction
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
66
72
0
19 May 2018
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
81
60
0
16 Aug 2017
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
89
25
0
23 May 2016
1