Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.07125
Cited By
Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions
25 April 2016
Susan Athey
Guido Imbens
Stefan Wager
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions"
50 / 111 papers shown
Title
Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
Xuran Meng
Yi Li
BDL
25
0
0
12 Apr 2025
Program Evaluation with Remotely Sensed Outcomes
Ashesh Rambachan
Rahul Singh
Davide Viviano
59
1
0
17 Nov 2024
Statistical Inference in High-dimensional Poisson Regression with Applications to Mediation Analysis
Prabrisha Rakshit
Zijian Guo
23
1
0
28 Oct 2024
Automatic debiasing of neural networks via moment-constrained learning
Christian L. Hines
Oliver J. Hines
CML
OOD
31
0
0
29 Sep 2024
U-learning for Prediction Inference via Combinatory Multi-Subsampling: With Applications to LASSO and Neural Networks
Zhe Fei
Yi Li
AI4CE
23
1
0
22 Jul 2024
Causal Inference with Complex Treatments: A Survey
Yingrong Wang
Haoxuan Li
Minqin Zhu
Anpeng Wu
Ruoxuan Xiong
Fei Wu
Kun Kuang
CML
32
0
0
19 Jul 2024
Causal inference through multi-stage learning and doubly robust deep neural networks
Yuqian Zhang
Jelena Bradic
OOD
CML
27
0
0
11 Jul 2024
Stable Heterogeneous Treatment Effect Estimation across Out-of-Distribution Populations
Yuling Zhang
Anpeng Wu
Kun Kuang
Liang Du
Zixun Sun
Zhi Wang
OODD
32
2
0
03 Jul 2024
C-Learner: Constrained Learning for Causal Inference and Semiparametric Statistics
T. Cai
Yuri Fonseca
Kaiwen Hou
Hongseok Namkoong
CML
17
1
0
15 May 2024
Causal-StoNet: Causal Inference for High-Dimensional Complex Data
Yaxin Fang
Faming Liang
CML
26
1
0
27 Mar 2024
Pareto-Optimal Estimation and Policy Learning on Short-term and Long-term Treatment Effects
Yingrong Wang
Anpeng Wu
Haoxuan Li
Weiming Liu
Qiaowei Miao
Ruoxuan Xiong
Fei Wu
Kun Kuang
42
0
0
05 Mar 2024
Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference
Debo Cheng
Yang Xie
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
13
1
0
08 Dec 2023
Uplift Modeling based on Graph Neural Network Combined with Causal Knowledge
Haowen Wang
Xinyan Ye
Yangze Zhou
Zhiyi Zhang
L. Zhang
Jing Jiang
CML
19
0
0
14 Nov 2023
Estimating treatment effects from single-arm trials via latent-variable modeling
Manuel Haussmann
Tran Minh Son Le
Viivi Halla-aho
Samu Kurki
Jussi Leinonen
Miika Koskinen
Samuel Kaski
Harri Lähdesmäki
CML
21
0
0
06 Nov 2023
High Precision Causal Model Evaluation with Conditional Randomization
Chao Ma
Cheng Zhang
CML
22
1
0
03 Nov 2023
Addressing Dynamic and Sparse Qualitative Data: A Hilbert Space Embedding of Categorical Variables
Anirban Mukherjee
Hannah H. Chang
CML
16
0
0
22 Aug 2023
RCT Rejection Sampling for Causal Estimation Evaluation
Katherine A. Keith
Sergey Feldman
David Jurgens
Jonathan Bragg
Rohit Bhattacharya
CML
22
7
0
27 Jul 2023
A Meta-Learning Method for Estimation of Causal Excursion Effects to Assess Time-Varying Moderation
Jieru Shi
Walter Dempsey
CML
15
4
0
28 Jun 2023
Root-n consistent semiparametric learning with high-dimensional nuisance functions under minimal sparsity
Lin Liu
Yuhao Wang
30
0
0
07 May 2023
Augmented balancing weights as linear regression
David Bruns-Smith
O. Dukes
Avi Feller
Elizabeth L. Ogburn
27
10
0
27 Apr 2023
Inference on Optimal Dynamic Policies via Softmax Approximation
Qizhao Chen
Morgane Austern
Vasilis Syrgkanis
OffRL
25
1
0
08 Mar 2023
Statistical Inference and Large-scale Multiple Testing for High-dimensional Regression Models
T. Tony Cai
Zijian Guo
Yin Xia
55
6
0
25 Jan 2023
Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap
Ganesh Karapakula
19
0
0
13 Jan 2023
Instrumental Variables in Causal Inference and Machine Learning: A Survey
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Fei Wu
SyDa
CML
20
6
0
12 Dec 2022
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
33
0
0
18 Nov 2022
Prediction Sets for High-Dimensional Mixture of Experts Models
Adel Javanmard
S. Shao
Jacob Bien
31
5
0
30 Oct 2022
Causal Effect of Functional Treatment
Ruoxu Tan
Wei Huang
Zheng-Wei Zhang
G. Yin
CML
23
5
0
01 Oct 2022
Falsification before Extrapolation in Causal Effect Estimation
Zeshan Hussain
Michael Oberst
M. Shih
David Sontag
CML
37
8
0
27 Sep 2022
Finite- and Large- Sample Inference for Model and Coefficients in High-dimensional Linear Regression with Repro Samples
P. Wang
Min-ge Xie
Linjun Zhang
27
5
0
19 Sep 2022
Data-Driven Causal Effect Estimation Based on Graphical Causal Modelling: A Survey
Debo Cheng
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
27
26
0
20 Aug 2022
Outcome Assumptions and Duality Theory for Balancing Weights
David Bruns-Smith
Avi Feller
14
5
0
17 Mar 2022
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
S. Murphy
J. Pineau
CML
8
9
0
28 Feb 2022
Debiased Graph Neural Networks with Agnostic Label Selection Bias
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
29
38
0
19 Jan 2022
Generalizing Graph Neural Networks on Out-Of-Distribution Graphs
Shaohua Fan
Xiao Wang
Chuan Shi
Peng Cui
Bai Wang
CML
OOD
OODD
AI4CE
37
81
0
20 Nov 2021
Projected State-action Balancing Weights for Offline Reinforcement Learning
Jiayi Wang
Zhengling Qi
Raymond K. W. Wong
OffRL
17
15
0
10 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
29
513
0
31 Aug 2021
Semiparametric Estimation of Long-Term Treatment Effects
Jiafeng Chen
David M. Ritzwoller
20
19
0
30 Jul 2021
Causal Inference with Panel Data under Temporal and Spatial Interference
Ye Wang
16
4
0
29 Jun 2021
An Interpretable Neural Network for Parameter Inference
Johann Pfitzinger
13
0
0
10 Jun 2021
The costs and benefits of uniformly valid causal inference with high-dimensional nuisance parameters
Niloofar Moosavi
J. Haggstrom
X. de Luna
19
14
0
05 May 2021
Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding
Zhengling Qi
Rui Miao
Xiaoke Zhang
CML
26
28
0
03 May 2021
Automatic Double Machine Learning for Continuous Treatment Effects
Sylvia Klosin
31
8
0
21 Apr 2021
Deconfounding Scores: Feature Representations for Causal Effect Estimation with Weak Overlap
Alexander DÁmour
Alexander M. Franks
CML
11
10
0
12 Apr 2021
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
AmirEmad Ghassami
Andrew Ying
I. Shpitser
E. T. Tchetgen
19
43
0
07 Apr 2021
Dynamic covariate balancing: estimating treatment effects over time with potential local projections
Davide Viviano
Jelena Bradic
21
0
0
01 Mar 2021
Covariate balancing for causal inference on categorical and continuous treatments
Seong-ho Lee
Yanyuan Ma
X. de Luna
CML
9
4
0
28 Feb 2021
Estimating Average Treatment Effects with Support Vector Machines
Alexander Tarr
Kosuke Imai
18
8
0
23 Feb 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
148
35
0
21 Jan 2021
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Rahul Singh
CML
23
39
0
18 Dec 2020
Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders
Yuhao Wang
Rajen Dinesh Shah
92
15
0
17 Nov 2020
1
2
3
Next