Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1604.08320
Cited By
Sequential Bayesian optimal experimental design via approximate dynamic programming
28 April 2016
Xun Huan
Youssef M. Marzouk
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sequential Bayesian optimal experimental design via approximate dynamic programming"
24 / 24 papers shown
Title
BED-LLM: Intelligent Information Gathering with LLMs and Bayesian Experimental Design
Deepro Choudhury
Sinead Williamson
Adam Goliñski
Ning Miao
Freddie Bickford-Smith
Michael Kirchhof
Yizhe Zhang
Tom Rainforth
164
1
0
28 Aug 2025
Gradient-Free Sequential Bayesian Experimental Design via Interacting Particle Systems
Robert Gruhlke
Matei Hanu
Claudia Schillings
Philipp Wacker
BDL
264
0
0
17 Apr 2025
Performance Comparisons of Reinforcement Learning Algorithms for Sequential Experimental Design
Yasir Zubayr Barlas
Kizito Salako
185
1
0
07 Mar 2025
Amortized Active Causal Induction with Deep Reinforcement Learning
Yashas Annadani
P. Tigas
Stefan Bauer
Adam Foster
203
3
0
26 May 2024
Nesting Particle Filters for Experimental Design in Dynamical Systems
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
Hany Abdulsamad
215
7
0
12 Feb 2024
Variational Sequential Optimal Experimental Design using Reinforcement Learning
Computer Methods in Applied Mechanics and Engineering (CMAME), 2023
Wanggang Shen
Jiayuan Dong
Xun Huan
151
9
0
17 Jun 2023
Experimentation Platforms Meet Reinforcement Learning: Bayesian Sequential Decision-Making for Continuous Monitoring
Knowledge Discovery and Data Mining (KDD), 2023
Runzhe Wan
Yu Liu
James McQueen
Doug Hains
Rui Song
OffRL
114
7
0
02 Apr 2023
Dimensionality Collapse: Optimal Measurement Selection for Low-Error Infinite-Horizon Forecasting
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
H. Naumer
F. Kamalabadi
148
0
0
27 Mar 2023
Modern Bayesian Experimental Design
Statistical Science (Statist. Sci.), 2023
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
281
146
0
28 Feb 2023
Design of experiments for the calibration of history-dependent models via deep reinforcement learning and an enhanced Kalman filter
Computational Mechanics (Comput. Mech.), 2022
Ruben Villarreal
Nikolaos N. Vlassis
Nhon N. Phan
Tommie A. Catanach
Reese E. Jones
N. Trask
S. Kramer
WaiChing Sun
OffRL
106
16
0
27 Sep 2022
Characterizing the robustness of Bayesian adaptive experimental designs to active learning bias
Sabina J. Sloman
Daniel M. Oppenheimer
S. Broomell
C. Shalizi
193
9
0
27 May 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
184
13
0
08 Mar 2022
Sequential Bayesian experimental designs via reinforcement learning
Hikaru Asano
OffRL
136
0
0
14 Feb 2022
Optimizing Sequential Experimental Design with Deep Reinforcement Learning
International Conference on Machine Learning (ICML), 2022
Tom Blau
Edwin V. Bonilla
Iadine Chadès
Amir Dezfouli
BDL
OffRL
380
57
0
02 Feb 2022
Bayesian Sequential Optimal Experimental Design for Nonlinear Models Using Policy Gradient Reinforcement Learning
Computer Methods in Applied Mechanics and Engineering (CMAME), 2021
Wanggang Shen
Xun Huan
170
51
0
28 Oct 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
International Conference on Machine Learning (ICML), 2021
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
180
103
0
03 Mar 2021
Sequential Bayesian optimal experimental design for structural reliability analysis
C. Agrell
Kristina Rognlien Dahl
115
23
0
01 Jul 2020
Bayesian Optimization with Output-Weighted Optimal Sampling
A. Blanchard
T. Sapsis
202
7
0
22 Apr 2020
Properties of using Fisher information gain for Bayesian design of experiments
A. Overstall
45
1
0
16 Mar 2020
Learning Arbitrary Quantities of Interest from Expensive Black-Box Functions through Bayesian Sequential Optimal Design
Piyush Pandita
Nimish Awalgaonkar
Ilias Bilionis
Jitesh H. Panchal
173
2
0
16 Dec 2019
Receding Horizon Curiosity
Conference on Robot Learning (CoRL), 2019
M. Schultheis
Boris Belousov
Hany Abdulsamad
Jan Peters
113
15
0
08 Oct 2019
Active Localization of Gas Leaks using Fluid Simulation
Martin Asenov
M. Rutkauskas
D. Reid
Kartic Subr
S. Ramamoorthy
135
21
0
28 Jan 2019
Replication or exploration? Sequential design for stochastic simulation experiments
M. Binois
Jiangeng Huang
R. Gramacy
M. Ludkovski
208
122
0
09 Oct 2017
Optimal Experimental Design Using A Consistent Bayesian Approach
Scott N. Walsh
T. Wildey
J. Jakeman
132
18
0
25 May 2017
1