Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.01559
Cited By
v1
v2
v3
v4 (latest)
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
5 May 2016
Alain Durmus
Eric Moulines
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm"
45 / 145 papers shown
Title
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
68
68
0
25 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
96
71
0
19 Jun 2019
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
105
43
0
30 May 2019
On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case
N. H. Chau
'. Moulines
Miklós Rásonyi
Sotirios Sabanis
Ying Zhang
83
41
0
30 May 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
132
37
0
23 May 2019
Convergence of diffusions and their discretizations: from continuous to discrete processes and back
Valentin De Bortoli
Alain Durmus
60
22
0
22 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
71
10
0
25 Mar 2019
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
Frederik Heber
Zofia Trstanova
Benedict Leimkuhler
26
1
0
20 Mar 2019
Asymptotically exact data augmentation: models, properties and algorithms
Maxime Vono
N. Dobigeon
P. Chainais
66
27
0
15 Feb 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
85
78
0
04 Feb 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
106
22
0
01 Feb 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
80
28
0
22 Jan 2019
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
Y. Lee
Zhao Song
Santosh Vempala
93
37
0
15 Dec 2018
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
92
38
0
06 Dec 2018
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition
Rong Ge
Holden Lee
Andrej Risteski
185
29
0
29 Nov 2018
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
88
78
0
25 Nov 2018
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
72
186
0
20 Nov 2018
Non-Asymptotic Guarantees For Sampling by Stochastic Gradient Descent
Avetik G. Karagulyan
21
1
0
02 Nov 2018
Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
62
28
0
25 Sep 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
67
75
0
21 Aug 2018
Higher Order Langevin Monte Carlo Algorithm
Sotirios Sabanis
Ying Zhang
82
23
0
02 Aug 2018
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
120
158
0
24 Jul 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
82
167
0
04 May 2018
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
102
85
0
27 Feb 2018
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
108
222
0
26 Feb 2018
Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo
Oren Mangoubi
Nisheeth K. Vishnoi
155
53
0
24 Feb 2018
Langevin Monte Carlo and JKO splitting
Espen Bernton
88
80
0
23 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
123
183
0
22 Feb 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
86
87
0
15 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
72
31
0
13 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
99
255
0
08 Jan 2018
Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit regression
Qian Qin
J. Hobert
63
32
0
24 Dec 2017
Natural Langevin Dynamics for Neural Networks
Gaétan Marceau-Caron
Yann Ollivier
BDL
77
30
0
04 Dec 2017
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
Rong Ge
Holden Lee
Andrej Risteski
96
53
0
07 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
99
297
0
29 Sep 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
136
106
0
23 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
90
205
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
146
302
0
12 Jul 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
91
101
0
16 Jun 2017
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
78
194
0
25 May 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
90
24
0
02 May 2017
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
52
175
0
16 Apr 2017
Rapid Mixing of Geodesic Walks on Manifolds with Positive Curvature
Oren Mangoubi
Aaron Smith
OT
101
22
0
09 Sep 2016
Ensemble preconditioning for Markov chain Monte Carlo simulation
Charles Matthews
Jonathan Weare
Benedict Leimkuhler
67
57
0
13 Jul 2016
Previous
1
2
3