Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07811
Cited By
v1
v2
v3 (latest)
Probabilistic Numerical Methods for Partial Differential Equations and Bayesian Inverse Problems
25 May 2016
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Probabilistic Numerical Methods for Partial Differential Equations and Bayesian Inverse Problems"
23 / 23 papers shown
Title
The Inverse of Exact Renormalization Group Flows as Statistical Inference
D. Berman
Marc S. Klinger
80
16
0
21 Dec 2022
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
87
1
0
15 Oct 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
111
19
0
22 Apr 2021
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
76
13
0
21 Oct 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
80
56
0
29 Jan 2020
Contributed Discussion of "A Bayesian Conjugate Gradient Method"
François‐Xavier Briol
F. DiazDelaO
P. O. Hristov
11
3
0
08 Aug 2019
A Role for Symmetry in the Bayesian Solution of Differential Equations
Junyang Wang
Jon Cockayne
Chris J. Oates
69
7
0
24 Jun 2019
Fast and Robust Shortest Paths on Manifolds Learned from Data
Georgios Arvanitidis
Søren Hauberg
Philipp Hennig
Michael Schober
66
37
0
22 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
124
874
0
18 Jan 2019
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
101
64
0
14 Jan 2019
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
142
361
0
09 Nov 2018
Probabilistic Linear Solvers: A Unifying View
Simon Bartels
Jon Cockayne
Ilse C. F. Ipsen
Philipp Hennig
83
24
0
08 Oct 2018
De-noising by thresholding operator adapted wavelets
G. Yoo
H. Owhadi
35
7
0
28 May 2018
Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography
L. Bruder
P. Koutsourelakis
MedIm
AI4CE
30
9
0
02 Mar 2018
A Bayesian Conjugate Gradient Method
Jon Cockayne
Chris J. Oates
Ilse C. F. Ipsen
Mark Girolami
66
27
0
16 Jan 2018
Neural network augmented inverse problems for PDEs
Jens Berg
K. Nystrom
94
41
0
27 Dec 2017
Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis
H. Owhadi
C. Scovel
68
28
0
31 Mar 2017
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
106
166
0
13 Feb 2017
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
AI4CE
72
80
0
15 Jan 2017
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
83
553
0
10 Jan 2017
Comments on "Bayesian Solution Uncertainty Quantification for Differential Equations" by Chkrebtii, Campbell, Calderhead & Girolami
François‐Xavier Briol
Jon Cockayne
Onur Teymur
41
5
0
21 Oct 2016
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
69
291
0
16 Jul 2016
Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
H. Owhadi
Lei Zhang
AI4CE
72
71
0
24 Jun 2016
1