Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.08636
Cited By
v1
v2
v3
v4 (latest)
PAC-Bayesian Theory Meets Bayesian Inference
27 May 2016
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"PAC-Bayesian Theory Meets Bayesian Inference"
50 / 119 papers shown
Title
Models of Heavy-Tailed Mechanistic Universality
Liam Hodgkinson
Zhichao Wang
Michael W. Mahoney
73
1
0
04 Jun 2025
Deep Actor-Critics with Tight Risk Certificates
Bahareh Tasdighi
Manuel Haussmann
Yi-Shan Wu
A. Masegosa
M. Kandemir
UQCV
88
0
0
26 May 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
101
6
0
03 Mar 2025
Stability-based Generalization Bounds for Variational Inference
Yadi Wei
Roni Khardon
BDL
81
0
0
17 Feb 2025
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
112
0
0
22 Oct 2024
AutoOPE: Automated Off-Policy Estimator Selection
Nicolò Felicioni
Michael Benigni
Maurizio Ferrari Dacrema
OffRL
58
1
0
26 Jun 2024
Finite Sample Analysis and Bounds of Generalization Error of Gradient Descent in In-Context Linear Regression
Karthik Duraisamy
MLT
85
3
0
03 May 2024
Which Model to Transfer? A Survey on Transferability Estimation
Yuhe Ding
Bo Jiang
Aijing Yu
Aihua Zheng
Jian Liang
114
5
0
23 Feb 2024
PAC-Bayes-Chernoff bounds for unbounded losses
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
113
6
0
02 Jan 2024
Non-Vacuous Generalization Bounds for Large Language Models
Sanae Lotfi
Marc Finzi
Yilun Kuang
Tim G. J. Rudner
Micah Goldblum
Andrew Gordon Wilson
108
25
0
28 Dec 2023
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Mihaly Petreczky
52
3
0
15 Dec 2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
98
2
0
13 Nov 2023
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
76
4
0
16 Oct 2023
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory
S. Mbacke
Florence Clerc
Pascal Germain
DRL
104
13
0
07 Oct 2023
If there is no underfitting, there is no Cold Posterior Effect
Yijie Zhang
Yi-Shan Wu
Luis A. Ortega
A. Masegosa
UQCV
66
1
0
02 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
103
20
0
28 Sep 2023
The fine print on tempered posteriors
Konstantinos Pitas
Julyan Arbel
72
1
0
11 Sep 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
75
9
0
15 Jul 2023
Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks
Dominik Schnaus
Jongseok Lee
Daniel Cremers
Rudolph Triebel
UQCV
BDL
78
1
0
15 Jul 2023
TablEye: Seeing small Tables through the Lens of Images
Seungeun Lee
Sang-Chul Lee
LMTD
59
1
0
04 Jul 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
67
1
0
08 Jun 2023
Federated Variational Inference: Towards Improved Personalization and Generalization
Elahe Vedadi
Joshua V. Dillon
Philip Mansfield
K. Singhal
Arash Afkanpour
Warren Morningstar
FedML
BDL
86
3
0
23 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
65
6
0
02 May 2023
Hyperparameter Optimization through Neural Network Partitioning
Bruno Mlodozeniec
M. Reisser
Christos Louizos
96
8
0
28 Apr 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
133
43
0
11 Apr 2023
PAC-Bayesian bounds for learning LTI-ss systems with input from empirical loss
Deividas Eringis
J. Leth
Zheng-Hua Tan
R. Wisniewski
Mihaly Petreczky
67
4
0
29 Mar 2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
S. Mbacke
Florence Clerc
Pascal Germain
104
9
0
17 Feb 2023
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
Roni Khardon
BDL
UQCV
85
0
0
05 Feb 2023
Learning Against Distributional Uncertainty: On the Trade-off Between Robustness and Specificity
Shixiong Wang
Haowei Wang
Xinke Li
Jean Honorio
OOD
123
2
0
31 Jan 2023
PAC-Bayesian-Like Error Bound for a Class of Linear Time-Invariant Stochastic State-Space Models
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Mihaly Petreczky
69
1
0
30 Dec 2022
Distributional Robustness Bounds Generalization Errors
Shixiong Wang
Haowei Wang
OOD
90
4
0
20 Dec 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
79
6
0
22 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
122
10
0
14 Nov 2022
Streaming PAC-Bayes Gaussian process regression with a performance guarantee for online decision making
Tianyu Liu
Jie Lu
Zheng Yan
Guangquan Zhang
127
0
0
16 Oct 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
77
6
0
14 Oct 2022
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Itai Gat
Yossi Adi
Alex Schwing
Tamir Hazan
BDL
97
6
0
12 Oct 2022
On the Importance of Calibration in Semi-supervised Learning
Charlotte Loh
Rumen Dangovski
Shivchander Sudalairaj
Seung-Jun Han
Ligong Han
Leonid Karlinsky
Marin Soljacic
Akash Srivastava
57
6
0
10 Oct 2022
PAC-Bayes Generalisation Bounds for Heavy-Tailed Losses through Supermartingales
Maxime Haddouche
Benjamin Guedj
123
22
0
03 Oct 2022
Revisiting Active Sets for Gaussian Process Decoders
Pablo Moreno-Muñoz
Cilie W. Feldager
Søren Hauberg
90
3
0
10 Sep 2022
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics
Masataro Asai
85
0
0
08 Sep 2022
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
Yanke Li
Hatt Tobias
Ioana Bica
M. Schaar
CML
80
0
0
02 Aug 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
80
3
0
02 Jul 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
89
5
0
22 Jun 2022
Bayesian non-conjugate regression via variational message passing
C. Castiglione
M. Bernardi
44
0
0
19 Jun 2022
Disentangling Model Multiplicity in Deep Learning
Ari Heljakka
Martin Trapp
Arno Solin
Arno Solin
65
4
0
17 Jun 2022
Excess risk analysis for epistemic uncertainty with application to variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
UQCV
110
1
0
02 Jun 2022
Online PAC-Bayes Learning
Maxime Haddouche
Benjamin Guedj
107
22
0
31 May 2022
PACTran: PAC-Bayesian Metrics for Estimating the Transferability of Pretrained Models to Classification Tasks
Nan Ding
Xi Chen
Tomer Levinboim
Soravit Changpinyo
Radu Soricut
79
29
0
10 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
149
58
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
147
48
0
22 Feb 2022
1
2
3
Next