ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.08754
  4. Cited By
Faster Eigenvector Computation via Shift-and-Invert Preconditioning

Faster Eigenvector Computation via Shift-and-Invert Preconditioning

26 May 2016
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
ArXivPDFHTML

Papers citing "Faster Eigenvector Computation via Shift-and-Invert Preconditioning"

50 / 663 papers shown
Title
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic
  Grasping
Learning Probabilistic Multi-Modal Actor Models for Vision-Based Robotic Grasping
Mengyuan Yan
A. Li
Mrinal Kalakrishnan
P. Pastor
11
18
0
15 Apr 2019
A Learned Representation for Scalable Vector Graphics
A Learned Representation for Scalable Vector Graphics
Raphael Gontijo-Lopes
David R Ha
Douglas Eck
Jonathon Shlens
GAN
OCL
30
113
0
04 Apr 2019
Nonparametric Density Estimation for High-Dimensional Data - Algorithms
  and Applications
Nonparametric Density Estimation for High-Dimensional Data - Algorithms and Applications
Zhipeng Wang
D. W. Scott
22
69
0
30 Mar 2019
High Fidelity Face Manipulation with Extreme Poses and Expressions
High Fidelity Face Manipulation with Extreme Poses and Expressions
Chaoyou Fu
Yibo Hu
Xiang Wu
Guoli Wang
Qian Zhang
R. He
CVBM
24
25
0
28 Mar 2019
Wasserstein Dependency Measure for Representation Learning
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Yoshua Bengio
Aaron van den Oord
Sergey Levine
P. Sermanet
SSL
DRL
22
115
0
28 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
9
18
0
11 Mar 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
29
20
0
10 Mar 2019
High-Fidelity Image Generation With Fewer Labels
High-Fidelity Image Generation With Fewer Labels
Mario Lucic
Michael Tschannen
Marvin Ritter
Xiaohua Zhai
Olivier Bachem
Sylvain Gelly
GAN
OOD
31
157
0
06 Mar 2019
VideoFlow: A Conditional Flow-Based Model for Stochastic Video
  Generation
VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
Manoj Kumar
Mohammad Babaeizadeh
D. Erhan
Chelsea Finn
Sergey Levine
Laurent Dinh
Durk Kingma
VGen
25
131
0
04 Mar 2019
Conditional Density Estimation with Neural Networks: Best Practices and
  Benchmarks
Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks
Jonas Rothfuss
Fabio Ferreira
Simon Walther
Maxim Ulrich
TPM
19
73
0
03 Mar 2019
Improving Evolutionary Strategies with Generative Neural Networks
Improving Evolutionary Strategies with Generative Neural Networks
Louis Faury
Clément Calauzènes
Olivier Fercoq
Syrine Krichene
11
12
0
31 Jan 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
19
193
0
29 Jan 2019
Deep Generative Learning via Variational Gradient Flow
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
19
36
0
24 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
34
854
0
18 Jan 2019
Understanding the (un)interpretability of natural image distributions
  using generative models
Understanding the (un)interpretability of natural image distributions using generative models
Ryen Krusinga
Sohil Shah
Matthias Zwicker
Tom Goldstein
David Jacobs
DiffM
FAtt
GAN
23
11
0
06 Jan 2019
AdaFlow: Domain-Adaptive Density Estimator with Application to Anomaly
  Detection and Unpaired Cross-Domain Translation
AdaFlow: Domain-Adaptive Density Estimator with Application to Anomaly Detection and Unpaired Cross-Domain Translation
Masataka Yamaguchi
Yuma Koizumi
N. Harada
14
37
0
14 Dec 2018
StoryGAN: A Sequential Conditional GAN for Story Visualization
StoryGAN: A Sequential Conditional GAN for Story Visualization
Yitong Li
Zhe Gan
Yelong Shen
Jingjing Liu
Yu Cheng
Yuexin Wu
Lawrence Carin
David Carlson
Jianfeng Gao
24
226
0
06 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
23
45
0
06 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
191
633
0
29 Nov 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
D. Duvenaud
J. Jacobsen
UQCV
TPM
20
617
0
02 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
20
166
0
01 Nov 2018
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
11
110
0
26 Oct 2018
Metropolis-Hastings view on variational inference and adversarial
  training
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
26
13
0
16 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
D. Duvenaud
DRL
17
848
0
02 Oct 2018
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
18
482
0
14 Aug 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
21
44
0
12 Jun 2018
Stochastic seismic waveform inversion using generative adversarial
  networks as a geological prior
Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
L. Mosser
O. Dubrule
M. Blunt
GAN
AI4CE
89
206
0
10 Jun 2018
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
23
149
0
31 May 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
52
358
0
18 May 2018
MGGAN: Solving Mode Collapse using Manifold Guided Training
MGGAN: Solving Mode Collapse using Manifold Guided Training
Duhyeon Bang
Hyunjung Shim
GAN
22
77
0
12 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
19
432
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
13
249
0
15 Mar 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
27
112
0
23 Feb 2018
BRUNO: A Deep Recurrent Model for Exchangeable Data
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
A. Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
i-RevNet: Deep Invertible Networks
i-RevNet: Deep Invertible Networks
J. Jacobsen
A. Smeulders
Edouard Oyallon
21
331
0
20 Feb 2018
Transformation Autoregressive Networks
Transformation Autoregressive Networks
Junier B. Oliva
Kumar Avinava Dubey
Manzil Zaheer
Barnabás Póczós
Ruslan Salakhutdinov
Eric P. Xing
J. Schneider
OOD
22
86
0
30 Jan 2018
Improved Training of Generative Adversarial Networks Using
  Representative Features
Improved Training of Generative Adversarial Networks Using Representative Features
Duhyeon Bang
Hyunjung Shim
GAN
30
33
0
28 Jan 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
D. Duvenaud
DRL
BDL
18
280
0
10 Jan 2018
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
36
855
0
28 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
KGAN: How to Break The Minimax Game in GAN
KGAN: How to Break The Minimax Game in GAN
Trung Le
T. Nguyen
Dinh Q. Phung
GAN
33
1
0
06 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
23
4,811
0
02 Nov 2017
Learning Independent Features with Adversarial Nets for Non-linear ICA
Learning Independent Features with Adversarial Nets for Non-linear ICA
Philemon Brakel
Yoshua Bengio
OOD
CML
21
93
0
13 Oct 2017
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
Reversible Architectures for Arbitrarily Deep Residual Neural Networks
B. Chang
Lili Meng
E. Haber
Lars Ruthotto
David Begert
E. Holtham
AI4CE
28
261
0
12 Sep 2017
Unsupervised Generative Modeling Using Matrix Product States
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
15
268
0
06 Sep 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
34
57
0
04 Sep 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Comparison of Maximum Likelihood and GAN-based training of Real NVPs
Ivo Danihelka
Balaji Lakshminarayanan
Benigno Uria
Daan Wierstra
Peter Dayan
GAN
24
53
0
15 May 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
29
119
0
17 Mar 2017
Previous
123...121314
Next