Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.09295
Cited By
The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains
30 May 2016
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains"
50 / 112 papers shown
Title
Upsampling artifacts in neural audio synthesis
Jordi Pons
Santiago Pascual
Giulio Cengarle
Joan Serra
28
62
0
27 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Black-Box Ripper: Copying black-box models using generative evolutionary algorithms
Antonio Bărbălău
Adrian Cosma
Radu Tudor Ionescu
Marius Popescu
MIACV
MLAU
16
43
0
21 Oct 2020
Knowledge-Enriched Distributional Model Inversion Attacks
Si-An Chen
Mostafa Kahla
R. Jia
Guo-Jun Qi
16
93
0
08 Oct 2020
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
8
60
0
04 Aug 2020
Explainable Face Recognition
Jonathan R. Williford
Brandon B. May
J. Byrne
CVBM
16
71
0
03 Aug 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
25
213
0
15 Jul 2020
Embedded Encoder-Decoder in Convolutional Networks Towards Explainable AI
A. Tavanaei
XAI
12
31
0
19 Jun 2020
A generalizable saliency map-based interpretation of model outcome
Shailja Thakur
S. Fischmeister
AAML
FAtt
MILM
19
2
0
16 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
OpenGAN: Open Set Generative Adversarial Networks
Luke Ditria
Benjamin J. Meyer
Tom Drummond
VLM
AI4CE
GAN
38
20
0
18 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
41
82
0
17 Mar 2020
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs
Matthew L. Leavitt
Ari S. Morcos
52
33
0
03 Mar 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
22
197
0
03 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
35
300
0
08 Jan 2020
On the Explanation of Machine Learning Predictions in Clinical Gait Analysis
D. Slijepcevic
Fabian Horst
Sebastian Lapuschkin
Anna-Maria Raberger
Matthias Zeppelzauer
Wojciech Samek
C. Breiteneder
W. Schöllhorn
B. Horsak
22
50
0
16 Dec 2019
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
Yuheng Zhang
R. Jia
Hengzhi Pei
Wenxiao Wang
Bo-wen Li
D. Song
AAML
13
410
0
17 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
S. Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,109
0
22 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
25
411
0
18 Oct 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
9
3
0
27 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
21
435
0
26 Sep 2019
Saccader: Improving Accuracy of Hard Attention Models for Vision
Gamaleldin F. Elsayed
Simon Kornblith
Quoc V. Le
VLM
25
70
0
20 Aug 2019
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
16
50
0
02 Jul 2019
Mechanisms of Artistic Creativity in Deep Learning Neural Networks
L. Wyse
AI4CE
13
11
0
30 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
20
82
0
31 May 2019
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
41
37
0
29 May 2019
Fashion++: Minimal Edits for Outfit Improvement
Wei-Lin Hsiao
Isay Katsman
Chao-Yuan Wu
Devi Parikh
Kristen Grauman
16
67
0
19 Apr 2019
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
23
20
0
19 Apr 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
19
151
0
29 Mar 2019
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
19
193
0
29 Jan 2019
Understanding Individual Decisions of CNNs via Contrastive Backpropagation
Jindong Gu
Yinchong Yang
Volker Tresp
FAtt
17
94
0
05 Dec 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
21
2
0
09 Nov 2018
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
39
65
0
08 Oct 2018
Semantically Invariant Text-to-Image Generation
Shagan Sah
D. Peri
Ameya Shringi
Chi Zhang
Miguel Domínguez
Andreas E. Savakis
R. Ptucha
EGVM
17
9
0
27 Sep 2018
Text-to-image Synthesis via Symmetrical Distillation Networks
Mingkuan Yuan
Yuxin Peng
DiffM
25
37
0
21 Aug 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
22
1,071
0
31 Jul 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
24
1,155
0
27 Jun 2018
Unsupervised Learning of Object Landmarks through Conditional Image Generation
Tomas Jakab
Ankush Gupta
Hakan Bilen
Andrea Vedaldi
SSL
19
252
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
14
82
0
19 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
14
1,149
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
38
1,840
0
31 May 2018
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
Weili Nie
Yang Zhang
Ankit B. Patel
FAtt
6
151
0
18 May 2018
SUNLayer: Stable denoising with generative networks
D. Mixon
Soledad Villar
15
21
0
25 Mar 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
20
31
0
21 Mar 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
14
63
0
21 Feb 2018
Decoupled Learning for Conditional Adversarial Networks
Zhifei Zhang
Yang Song
Hairong Qi
33
22
0
21 Jan 2018
What have we learned from deep representations for action recognition?
Christoph Feichtenhofer
A. Pinz
Richard P. Wildes
Andrew Zisserman
SSL
18
47
0
04 Jan 2018
What do we need to build explainable AI systems for the medical domain?
Andreas Holzinger
Chris Biemann
C. Pattichis
D. Kell
28
680
0
28 Dec 2017
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
29
323
0
15 Nov 2017
Previous
1
2
3
Next