ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.09295
  4. Cited By
The Latin American Giant Observatory: a successful collaboration in
  Latin America based on Cosmic Rays and computer science domains

The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains

30 May 2016
Hernán Asorey
R. Mayo-García
L. Núñez
M. Pascual
A. J. Rubio-Montero
M. Suárez-Durán
L. A. Torres-Niño
ArXivPDFHTML

Papers citing "The Latin American Giant Observatory: a successful collaboration in Latin America based on Cosmic Rays and computer science domains"

50 / 112 papers shown
Title
Upsampling artifacts in neural audio synthesis
Upsampling artifacts in neural audio synthesis
Jordi Pons
Santiago Pascual
Giulio Cengarle
Joan Serra
28
62
0
27 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than
  State-of-the-Art Feature Visualization
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
36
7
0
23 Oct 2020
Black-Box Ripper: Copying black-box models using generative evolutionary
  algorithms
Black-Box Ripper: Copying black-box models using generative evolutionary algorithms
Antonio Bărbălău
Adrian Cosma
Radu Tudor Ionescu
Marius Popescu
MIACV
MLAU
16
43
0
21 Oct 2020
Knowledge-Enriched Distributional Model Inversion Attacks
Knowledge-Enriched Distributional Model Inversion Attacks
Si-An Chen
Mostafa Kahla
R. Jia
Guo-Jun Qi
16
93
0
08 Oct 2020
Explainable Predictive Process Monitoring
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
8
60
0
04 Aug 2020
Explainable Face Recognition
Explainable Face Recognition
Jonathan R. Williford
Brandon B. May
J. Byrne
CVBM
16
71
0
03 Aug 2020
A Survey of Privacy Attacks in Machine Learning
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
25
213
0
15 Jul 2020
Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
  AI
Embedded Encoder-Decoder in Convolutional Networks Towards Explainable AI
A. Tavanaei
XAI
12
31
0
19 Jun 2020
A generalizable saliency map-based interpretation of model outcome
A generalizable saliency map-based interpretation of model outcome
Shailja Thakur
S. Fischmeister
AAML
FAtt
MILM
19
2
0
16 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
OpenGAN: Open Set Generative Adversarial Networks
OpenGAN: Open Set Generative Adversarial Networks
Luke Ditria
Benjamin J. Meyer
Tom Drummond
VLM
AI4CE
GAN
38
20
0
18 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
41
82
0
17 Mar 2020
Selectivity considered harmful: evaluating the causal impact of class
  selectivity in DNNs
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs
Matthew L. Leavitt
Ari S. Morcos
52
33
0
03 Mar 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks:
  A User Study
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
22
197
0
03 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
26
817
0
20 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
35
300
0
08 Jan 2020
On the Explanation of Machine Learning Predictions in Clinical Gait
  Analysis
On the Explanation of Machine Learning Predictions in Clinical Gait Analysis
D. Slijepcevic
Fabian Horst
Sebastian Lapuschkin
Anna-Maria Raberger
Matthias Zeppelzauer
Wojciech Samek
C. Breiteneder
W. Schöllhorn
B. Horsak
22
50
0
16 Dec 2019
The Secret Revealer: Generative Model-Inversion Attacks Against Deep
  Neural Networks
The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks
Yuheng Zhang
R. Jia
Hengzhi Pei
Wenxiao Wang
Bo-wen Li
D. Song
AAML
13
410
0
17 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
S. Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,109
0
22 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
25
411
0
18 Oct 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box
  Models
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
9
3
0
27 Sep 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
21
435
0
26 Sep 2019
Saccader: Improving Accuracy of Hard Attention Models for Vision
Saccader: Improving Accuracy of Hard Attention Models for Vision
Gamaleldin F. Elsayed
Simon Kornblith
Quoc V. Le
VLM
25
70
0
20 Aug 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
16
50
0
02 Jul 2019
Mechanisms of Artistic Creativity in Deep Learning Neural Networks
Mechanisms of Artistic Creativity in Deep Learning Neural Networks
L. Wyse
AI4CE
13
11
0
30 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
20
82
0
31 May 2019
Leveraging Latent Features for Local Explanations
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
41
37
0
29 May 2019
Fashion++: Minimal Edits for Outfit Improvement
Fashion++: Minimal Edits for Outfit Improvement
Wei-Lin Hsiao
Isay Katsman
Chao-Yuan Wu
Devi Parikh
Kristen Grauman
16
67
0
19 Apr 2019
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization
  Simulation
NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation
Subhashis Hazarika
Haoyu Li
Ko-Chih Wang
Han-Wei Shen
Ching-Shan Chou
23
20
0
19 Apr 2019
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based
  Models
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
Erik Nijkamp
Mitch Hill
Tian Han
Song-Chun Zhu
Ying Nian Wu
19
151
0
29 Mar 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
19
193
0
29 Jan 2019
Understanding Individual Decisions of CNNs via Contrastive
  Backpropagation
Understanding Individual Decisions of CNNs via Contrastive Backpropagation
Jindong Gu
Yinchong Yang
Volker Tresp
FAtt
17
94
0
05 Dec 2018
An Overview of Computational Approaches for Interpretation Analysis
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
21
2
0
09 Nov 2018
Design by adaptive sampling
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
39
65
0
08 Oct 2018
Semantically Invariant Text-to-Image Generation
Semantically Invariant Text-to-Image Generation
Shagan Sah
D. Peri
Ameya Shringi
Chi Zhang
Miguel Domínguez
Andreas E. Savakis
R. Ptucha
EGVM
17
9
0
27 Sep 2018
Text-to-image Synthesis via Symmetrical Distillation Networks
Text-to-image Synthesis via Symmetrical Distillation Networks
Mingkuan Yuan
Yuxin Peng
DiffM
25
37
0
21 Aug 2018
Techniques for Interpretable Machine Learning
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
22
1,071
0
31 Jul 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
24
1,155
0
27 Jun 2018
Unsupervised Learning of Object Landmarks through Conditional Image
  Generation
Unsupervised Learning of Object Landmarks through Conditional Image Generation
Tomas Jakab
Ankush Gupta
Hakan Bilen
Andrea Vedaldi
SSL
19
252
0
20 Jun 2018
Contrastive Explanations with Local Foil Trees
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
14
82
0
19 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
14
1,149
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
38
1,840
0
31 May 2018
A Theoretical Explanation for Perplexing Behaviors of
  Backpropagation-based Visualizations
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
Weili Nie
Yang Zhang
Ankit B. Patel
FAtt
6
151
0
18 May 2018
SUNLayer: Stable denoising with generative networks
SUNLayer: Stable denoising with generative networks
D. Mixon
Soledad Villar
15
21
0
25 Mar 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
20
31
0
21 Mar 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic
  Corrections
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
14
63
0
21 Feb 2018
Decoupled Learning for Conditional Adversarial Networks
Decoupled Learning for Conditional Adversarial Networks
Zhifei Zhang
Yang Song
Hairong Qi
33
22
0
21 Jan 2018
What have we learned from deep representations for action recognition?
What have we learned from deep representations for action recognition?
Christoph Feichtenhofer
A. Pinz
Richard P. Wildes
Andrew Zisserman
SSL
18
47
0
04 Jan 2018
What do we need to build explainable AI systems for the medical domain?
What do we need to build explainable AI systems for the medical domain?
Andreas Holzinger
Chris Biemann
C. Pattichis
D. Kell
28
680
0
28 Dec 2017
Interpreting Deep Visual Representations via Network Dissection
Interpreting Deep Visual Representations via Network Dissection
Bolei Zhou
David Bau
A. Oliva
Antonio Torralba
FAtt
MILM
29
323
0
15 Nov 2017
Previous
123
Next