ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.09332
  4. Cited By
Parametric Exponential Linear Unit for Deep Convolutional Neural
  Networks

Parametric Exponential Linear Unit for Deep Convolutional Neural Networks

30 May 2016
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
ArXivPDFHTML

Papers citing "Parametric Exponential Linear Unit for Deep Convolutional Neural Networks"

14 / 14 papers shown
Title
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with
  Multilayer Perceptrons
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons
Farhad Pourkamali-Anaraki
30
5
0
16 Sep 2024
How important are activation functions in regression and classification?
  A survey, performance comparison, and future directions
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
29
71
0
06 Sep 2022
A Discriminative Single-Shot Segmentation Network for Visual Object
  Tracking
A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
A. Lukežič
Jirí Matas
Matej Kristan
VOS
21
9
0
22 Dec 2021
Activation Functions in Deep Learning: A Comprehensive Survey and
  Benchmark
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
30
640
0
29 Sep 2021
Activation function design for deep networks: linearity and effective
  initialisation
Activation function design for deep networks: linearity and effective initialisation
Michael Murray
V. Abrol
Jared Tanner
ODL
LLMSV
13
18
0
17 May 2021
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function
  For Deep Learning
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function For Deep Learning
Hock Hung Chieng
Noorhaniza Wahid
P. Ong
11
6
0
06 Nov 2020
Deep Isometric Learning for Visual Recognition
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
X. Wang
Yi-An Ma
Jitendra Malik
VLM
22
53
0
30 Jun 2020
D3S -- A Discriminative Single Shot Segmentation Tracker
D3S -- A Discriminative Single Shot Segmentation Tracker
A. Lukežič
Jirí Matas
Matej Kristan
VOS
22
234
0
20 Nov 2019
Motion Planning Networks: Bridging the Gap Between Learning-based and
  Classical Motion Planners
Motion Planning Networks: Bridging the Gap Between Learning-based and Classical Motion Planners
A. H. Qureshi
Yinglong Miao
Anthony Simeonov
Michael C. Yip
PINN
3DV
12
212
0
13 Jul 2019
Insights into LSTM Fully Convolutional Networks for Time Series
  Classification
Insights into LSTM Fully Convolutional Networks for Time Series Classification
Fazle Karim
Somshubra Majumdar
H. Darabi
AI4TS
8
168
0
27 Feb 2019
Deep Learning using Rectified Linear Units (ReLU)
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
8
3,160
0
22 Mar 2018
Multivariate LSTM-FCNs for Time Series Classification
Multivariate LSTM-FCNs for Time Series Classification
Fazle Karim
Somshubra Majumdar
H. Darabi
Samuel Harford
AI4TS
16
824
0
14 Jan 2018
Pyramidal RoR for Image Classification
Pyramidal RoR for Image Classification
Ke Zhang
Liru Guo
Ce Gao
Zhenbing Zhao
30
20
0
01 Oct 2017
Residual Networks of Residual Networks: Multilevel Residual Networks
Residual Networks of Residual Networks: Multilevel Residual Networks
Ke Zhang
Miao Sun
T. Han
Xingfang Yuan
Liru Guo
Tao Liu
16
302
0
09 Aug 2016
1