Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.00068
Cited By
Quantifying the probable approximation error of probabilistic inference programs
31 May 2016
Marco F. Cusumano-Towner
Vikash K. Mansinghka
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying the probable approximation error of probabilistic inference programs"
8 / 8 papers shown
Title
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
47
7
0
03 May 2023
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers
Zong-xiao Li
Chong You
Srinadh Bhojanapalli
Daliang Li
A. S. Rawat
...
Kenneth Q Ye
Felix Chern
Felix X. Yu
Ruiqi Guo
Surinder Kumar
MoE
25
87
0
12 Oct 2022
Laziness, Barren Plateau, and Noise in Machine Learning
Junyu Liu
Zexi Lin
Liang Jiang
25
21
0
19 Jun 2022
The edge of chaos: quantum field theory and deep neural networks
Kevin T. Grosvenor
R. Jefferson
25
22
0
27 Sep 2021
Deep learning approaches to surrogates for solving the diffusion equation for mechanistic real-world simulations
J. Q. Toledo-Marín
Geoffrey C. Fox
J. Sluka
J. Glazier
MedIm
AI4CE
11
8
0
10 Feb 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,460
0
23 Jan 2020
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
248
890
0
11 Nov 2017
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
31,253
0
16 Jan 2013
1