ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.07285
  4. Cited By
Identifying individual facial expressions by deconstructing a neural
  network
v1v2 (latest)

Identifying individual facial expressions by deconstructing a neural network

German Conference on Pattern Recognition (DAGM), 2016
23 June 2016
F. Arbabzadah
G. Montavon
K. Müller
Wojciech Samek
    CVBMFAtt
ArXiv (abs)PDFHTML

Papers citing "Identifying individual facial expressions by deconstructing a neural network"

9 / 9 papers shown
Towards Robust Explanations for Deep Neural Networks
Towards Robust Explanations for Deep Neural NetworksPattern Recognition (Pattern Recognit.), 2020
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
221
66
0
18 Dec 2020
The MAMe Dataset: On the relevance of High Resolution and Variable Shape
  image properties
The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties
Ferran Parés
Anna Arias-Duart
Dario Garcia-Gasulla
Gema Campo-Francés
Nina Viladrich
Eduard Ayguadé
Jesús Labarta
288
9
0
27 Jul 2020
Towards Interpretable Deep Learning Models for Knowledge Tracing
Towards Interpretable Deep Learning Models for Knowledge Tracing
Yu Lu
De-Wu Wang
Qinggang Meng
Penghe Chen
159
41
0
13 May 2020
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really LearnNature Communications (Nat Commun), 2019
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
355
1,116
0
26 Feb 2019
How do Convolutional Neural Networks Learn Design?
How do Convolutional Neural Networks Learn Design?
Shailza Jolly
Brian Kenji Iwana
Ryohei Kuroki
S. Uchida
DiffM
132
16
0
25 Aug 2018
Understanding and Comparing Deep Neural Networks for Age and Gender
  Classification
Understanding and Comparing Deep Neural Networks for Age and Gender Classification
Sebastian Lapuschkin
Alexander Binder
K. Müller
Wojciech Samek
CVBM
163
141
0
25 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
496
2,436
0
24 Jun 2017
"What is Relevant in a Text Document?": An Interpretable Machine
  Learning Approach
"What is Relevant in a Text Document?": An Interpretable Machine Learning ApproachPLoS ONE (PLOS ONE), 2016
L. Arras
F. Horn
G. Montavon
K. Müller
Wojciech Samek
188
295
0
23 Dec 2016
Interpreting the Predictions of Complex ML Models by Layer-wise
  Relevance Propagation
Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation
Wojciech Samek
G. Montavon
Alexander Binder
Sebastian Lapuschkin
K. Müller
FAttAI4CE
208
55
0
24 Nov 2016
1