ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.03463
  4. Cited By
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain

LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain

12 July 2016
Zeyuan Allen-Zhu
Yuanzhi Li
ArXivPDFHTML

Papers citing "LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain"

14 / 14 papers shown
Title
Mean of Means: A 10-dollar Solution for Human Localization with Calibration-free and Unconstrained Camera Settings
Mean of Means: A 10-dollar Solution for Human Localization with Calibration-free and Unconstrained Camera Settings
Tianyi Zhang
Wengyu Zhang
Xu-Lu Zhang
Jiaxin Wu
Xiao Wei
Jiannong Cao
Qing Li
32
0
0
28 Jan 2025
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
37
2
0
06 Mar 2024
Compression-aware Training of Neural Networks using Frank-Wolfe
Compression-aware Training of Neural Networks using Frank-Wolfe
Max Zimmer
Christoph Spiegel
S. Pokutta
14
9
0
24 May 2022
Fast algorithm for overcomplete order-3 tensor decomposition
Fast algorithm for overcomplete order-3 tensor decomposition
Jingqiu Ding
Tommaso dÓrsi
Chih-Hung Liu
Stefan Tiegel
David Steurer
13
9
0
14 Feb 2022
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
14
74
0
07 Dec 2020
Distributed Estimation for Principal Component Analysis: an Enlarged
  Eigenspace Analysis
Distributed Estimation for Principal Component Analysis: an Enlarged Eigenspace Analysis
Xi Chen
J. Lee
He Li
Yun Yang
6
6
0
05 Apr 2020
Learning-Based Low-Rank Approximations
Learning-Based Low-Rank Approximations
Piotr Indyk
A. Vakilian
Yang Yuan
37
67
0
30 Oct 2019
Streaming Kernel PCA with $\tilde{O}(\sqrt{n})$ Random Features
Streaming Kernel PCA with O~(n)\tilde{O}(\sqrt{n})O~(n​) Random Features
Enayat Ullah
Poorya Mianjy
T. V. Marinov
R. Arora
17
20
0
02 Aug 2018
A Nonconvex Projection Method for Robust PCA
A Nonconvex Projection Method for Robust PCA
Aritra Dutta
Filip Hanzely
Peter Richtárik
12
24
0
21 May 2018
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed
  Wigner Law
Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law
Max Simchowitz
A. Alaoui
Benjamin Recht
15
38
0
04 Apr 2018
On Noisy Negative Curvature Descent: Competing with Gradient Descent for
  Faster Non-convex Optimization
On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization
Mingrui Liu
Tianbao Yang
22
23
0
25 Sep 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly
  Non-Convex Parameter
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
15
80
0
02 Feb 2017
Faster Principal Component Regression and Stable Matrix Chebyshev
  Approximation
Faster Principal Component Regression and Stable Matrix Chebyshev Approximation
Zeyuan Allen-Zhu
Yuanzhi Li
11
20
0
16 Aug 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
1