Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.01118
Cited By
v1
v2
v3 (latest)
A supermartingale approach to Gaussian process based sequential design of experiments
3 August 2016
Julien Bect
François Bachoc
D. Ginsbourger
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A supermartingale approach to Gaussian process based sequential design of experiments"
23 / 23 papers shown
Title
Bayesian Optimization for Non-Convex Two-Stage Stochastic Optimization Problems
Jack M. Buckingham
Ivo Couckuyt
Juergen Branke
83
0
0
30 Aug 2024
Pseudo-Bayesian Optimization
Haoxian Chen
Henry Lam
112
2
0
15 Oct 2023
Disintegration of Gaussian Measures for Sequential Assimilation of Linear Operator Data
Cédric Travelletti
D. Ginsbourger
72
6
0
27 Jul 2022
Bayesian Optimization of Function Networks
Raul Astudillo
P. Frazier
78
37
0
31 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
82
4
0
14 Dec 2021
Continuous logistic Gaussian random measure fields for spatial distributional modelling
Athénais Gautier
D. Ginsbourger
39
0
0
06 Oct 2021
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
68
4
0
08 Sep 2021
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
77
21
0
28 Aug 2020
Sequential design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction
Rémi Stroh
Julien Bect
S. Demeyer
N. Fischer
Damien Marquis
E. Vázquez
33
13
0
27 Jul 2020
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
T. Fossum
Cédric Travelletti
J. Eidsvik
D. Ginsbourger
K. Rajan
32
18
0
07 Jul 2020
Sequential Bayesian optimal experimental design for structural reliability analysis
C. Agrell
Kristina Rognlien Dahl
56
21
0
01 Jul 2020
Uncertainty quantification using martingales for misspecified Gaussian processes
Willie Neiswanger
Aaditya Ramdas
UQCV
50
14
0
12 Jun 2020
Additive stacking for disaggregate electricity demand forecasting
Christian Capezza
B. Palumbo
Y. Goude
S. Wood
Matteo Fasiolo
AI4TS
85
7
0
20 May 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
75
93
0
14 Oct 2019
Kernels over Sets of Finite Sets using RKHS Embeddings, with Application to Bayesian (Combinatorial) Optimization
Poompol Buathong
D. Ginsbourger
Tipaluck Krityakierne
BDL
90
22
0
09 Oct 2019
Knowledge Gradient for Selection with Covariates: Consistency and Computation
Liang Ding
L. Hong
Haihui Shen
Xiaowei Zhang
BDL
100
27
0
12 Jun 2019
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations
Marko Jarvenpaa
Michael U. Gutmann
Aki Vehtari
Pekka Marttinen
118
41
0
03 May 2019
Bayesian quadrature and energy minimization for space-filling design
L. Pronzato
A. Zhigljavsky
122
9
0
31 Aug 2018
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
51
12
0
24 Jul 2018
Maximum likelihood estimation for Gaussian processes under inequality constraints
François Bachoc
A. Lagnoux
A. F. López-Lopera
87
24
0
10 Apr 2018
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
François Bachoc
N. Durrande
O. Roustant
138
67
0
20 Oct 2017
Adaptive Design of Experiments for Conservative Estimation of Excursion Sets
Dario Azzimonti
D. Ginsbourger
C. Chevalier
Julien Bect
Y. Richet
93
44
0
22 Nov 2016
A Bayesian optimization approach to find Nash equilibria
Victor Picheny
M. Binois
A. Habbal
84
35
0
08 Nov 2016
1