ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.04388
  4. Cited By
Relativistic Monte Carlo

Relativistic Monte Carlo

14 September 2016
Xiaoyu Lu
Valerio Perrone
Leonard Hasenclever
Yee Whye Teh
Sebastian J. Vollmer
    BDL
ArXiv (abs)PDFHTML

Papers citing "Relativistic Monte Carlo"

16 / 16 papers shown
Title
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for
  Optimization
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for OptimizationInternational Conference on Machine Learning (ICML), 2022
G. Luca
E. Silverstein
179
12
0
26 Jan 2022
A fresh take on 'Barker dynamics' for MCMC
A fresh take on 'Barker dynamics' for MCMCMonte Carlo and Quasi-Monte Carlo Methods (MCQMC), 2020
Max Hird
Samuel Livingstone
T. Rigon
274
10
0
17 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
276
12
0
09 Nov 2020
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks
Umut Simsekli
Ozan Sener
George Deligiannidis
Murat A. Erdogdu
241
66
0
16 Jun 2020
Bayesian Neural Networks
Bayesian Neural Networks
Tom Charnock
Laurence Perreault Levasseur
F. Lanusse
UQCVBDL
228
3
0
02 Jun 2020
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
  under Heavy-Tailed Gradient Noise
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient NoiseInternational Conference on Machine Learning (ICML), 2020
Umut Simsekli
Lingjiong Zhu
Yee Whye Teh
Mert Gurbuzbalaban
194
53
0
13 Feb 2020
Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling
Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling
Ziming Liu
Zheng Zhang
272
11
0
04 Dec 2019
Bayesian Inference for Large Scale Image Classification
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCVBDL
193
36
0
09 Aug 2019
Conformal Symplectic and Relativistic Optimization
Conformal Symplectic and Relativistic Optimization
G. Francca
Jeremias Sulam
Daniel P. Robinson
René Vidal
471
72
0
11 Mar 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein SpaceInternational Conference on Machine Learning (ICML), 2019
Yu Xie
Jingwei Zhuo
Jun Zhu
342
23
0
01 Feb 2019
Modified Hamiltonian Monte Carlo for Bayesian inference
Modified Hamiltonian Monte Carlo for Bayesian inferenceStatistics and computing (Stat. Comput.), 2017
Tijana Radivojević
E. Akhmatskaya
390
31
0
13 Jun 2017
Kinetic energy choice in Hamiltonian/hybrid Monte Carlo
Kinetic energy choice in Hamiltonian/hybrid Monte Carlo
Samuel Livingstone
Michael F Faulkner
Gareth O. Roberts
163
46
0
08 Jun 2017
Stochastic Gradient Monomial Gamma Sampler
Stochastic Gradient Monomial Gamma SamplerInternational Conference on Machine Learning (ICML), 2017
Yizhe Zhang
Changyou Chen
Zhe Gan
Ricardo Henao
Lawrence Carin
BDL
181
11
0
05 Jun 2017
On the convergence of Hamiltonian Monte Carlo
On the convergence of Hamiltonian Monte Carlo
Alain Durmus
Eric Moulines
E. Saksman
154
71
0
29 Apr 2017
Distributed Bayesian Learning with Stochastic Natural-gradient
  Expectation Propagation and the Posterior Server
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
392
73
0
31 Dec 2015
Recycling intermediate steps to improve Hamiltonian Monte Carlo
Recycling intermediate steps to improve Hamiltonian Monte Carlo
A. Nishimura
David B. Dunson
238
10
0
21 Nov 2015
1