ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.05067
  4. Cited By
Asymptotic frequentist coverage properties of Bayesian credible sets for
  sieve priors
v1v2v3v4 (latest)

Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors

16 September 2016
Judith Rousseau
Botond Szabó
ArXiv (abs)PDFHTML

Papers citing "Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors"

6 / 6 papers shown
Title
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
87
1
0
13 Oct 2023
Uncertainty quantification for sparse spectral variational
  approximations in Gaussian process regression
Uncertainty quantification for sparse spectral variational approximations in Gaussian process regression
D. Nieman
Botond Szabó
Harry Van Zanten
136
5
0
21 Dec 2022
Optimal recovery and uncertainty quantification for distributed Gaussian
  process regression
Optimal recovery and uncertainty quantification for distributed Gaussian process regression
Amine Hadji
Tammo Hesselink
Botond Szabó
72
3
0
06 May 2022
Distributed function estimation: adaptation using minimal communication
Distributed function estimation: adaptation using minimal communication
Botond Szabó
Harry Van Zanten
66
13
0
28 Mar 2020
Can we trust Bayesian uncertainty quantification from Gaussian process
  priors with squared exponential covariance kernel?
Can we trust Bayesian uncertainty quantification from Gaussian process priors with squared exponential covariance kernel?
Amine Hadji
B. Szabó
56
16
0
02 Apr 2019
Spike and slab empirical Bayes sparse credible sets
Spike and slab empirical Bayes sparse credible sets
I. Castillo
Botond Szabó
69
20
0
23 Aug 2018
1