ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.09869
  4. Cited By
Structured Inference Networks for Nonlinear State Space Models

Structured Inference Networks for Nonlinear State Space Models

30 September 2016
Rahul G. Krishnan
Uri Shalit
David Sontag
    BDL
ArXivPDFHTML

Papers citing "Structured Inference Networks for Nonlinear State Space Models"

50 / 97 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
78
1
0
20 Feb 2025
Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
Naichang Ke
Ryogo Tanaka
Yoshinobu Kawahara
41
0
0
06 Jan 2025
Deep Kalman Filters Can Filter
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
AI-Aided Kalman Filters
AI-Aided Kalman Filters
Nir Shlezinger
Guy Revach
Anubhab Ghosh
S. Chatterjee
Shuo Tang
Tales Imbiriba
J. Duník
O. Straka
Pau Closas
Yonina C. Eldar
80
3
0
16 Oct 2024
Learning to Select the Best Forecasting Tasks for Clinical Outcome
  Prediction
Learning to Select the Best Forecasting Tasks for Clinical Outcome Prediction
Yuan Xue
Nan Du
A. Mottram
Martin G. Seneviratne
Andrew M. Dai
AI4TS
55
0
0
28 Jul 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Vijaya Krishna Yalavarthi
Randolf Scholz
Stefan Born
Lars Schmidt-Thieme
AI4TS
35
0
0
09 Feb 2024
Learning Multimodal Latent Dynamics for Human-Robot Interaction
Learning Multimodal Latent Dynamics for Human-Robot Interaction
V. Prasad
Lea Heitlinger
Dorothea Koert
R. Stock-Homburg
Jan Peters
Georgia Chalvatzaki
48
3
0
27 Nov 2023
A projected nonlinear state-space model for forecasting time series signals
A projected nonlinear state-space model for forecasting time series signals
Christian Donner
Anuj Mishra
Hideaki Shimazaki
AI4TS
21
0
0
22 Nov 2023
Large Pre-trained time series models for cross-domain Time series
  analysis tasks
Large Pre-trained time series models for cross-domain Time series analysis tasks
Harshavardhan Kamarthi
B. A. Prakash
VLM
AI4TS
23
10
0
19 Nov 2023
Multi Time Scale World Models
Multi Time Scale World Models
Vaisakh Shaj
Saleh Gholam Zadeh
Ozan Demir
L. R. Douat
Gerhard Neumann
AI4CE
30
3
0
27 Oct 2023
When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
36
5
0
17 Oct 2023
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron
  Microscopy Movies
Recovering a Molecule's 3D Dynamics from Liquid-phase Electron Microscopy Movies
E. Ye
Yuhang Wang
Hong Zhang
Y. Gao
Huan Wang
H. Sun
31
2
0
23 Aug 2023
DANSE: Data-driven Non-linear State Estimation of Model-free Process in
  Unsupervised Learning Setup
DANSE: Data-driven Non-linear State Estimation of Model-free Process in Unsupervised Learning Setup
Anubhab Ghosh
Antoine Honoré
S. Chatterjee
26
20
0
04 Jun 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
36
6
0
02 May 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Criteria for Classifying Forecasting Methods
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
21
173
0
07 Dec 2022
Recurrent Neural Networks and Universal Approximation of Bayesian
  Filters
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
29
3
0
01 Nov 2022
On Uncertainty in Deep State Space Models for Model-Based Reinforcement
  Learning
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
Neural Extended Kalman Filters for Learning and Predicting Dynamics of
  Structural Systems
Neural Extended Kalman Filters for Learning and Predicting Dynamics of Structural Systems
Wei Liu
Zhilu Lai
Kiran Bacsa
Eleni Chatzi
38
16
0
09 Oct 2022
Neural modal ordinary differential equations: Integrating physics-based
  modeling with neural ordinary differential equations for modeling
  high-dimensional monitored structures
Neural modal ordinary differential equations: Integrating physics-based modeling with neural ordinary differential equations for modeling high-dimensional monitored structures
Zhilu Lai
Wei Liu
Xudong Jian
Kiran Bacsa
Limin Sun
Eleni Chatzi
AI4CE
26
22
0
16 Jul 2022
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
42
30
0
06 Jul 2022
Protoformer: Embedding Prototypes for Transformers
Protoformer: Embedding Prototypes for Transformers
Ashkan Farhangi
Ning Sui
Nan Hua
Haiyan Bai
Arthur Huang
Zhishan Guo
ViT
32
5
0
25 Jun 2022
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Yilmazcan Ozyurt
Stefan Feuerriegel
Ce Zhang
AI4TS
34
45
0
13 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
29
8
0
10 Jun 2022
Variational Heteroscedastic Volatility Model
Variational Heteroscedastic Volatility Model
Zexuan Yin
P. Barucca
AI4TS
23
0
0
11 Apr 2022
STEADY: Simultaneous State Estimation and Dynamics Learning from
  Indirect Observations
STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations
Jiayi Wei
Jarrett Holtz
Işıl Dillig
Joydeep Biswas
37
4
0
02 Mar 2022
Neural Ordinary Differential Equations for Nonlinear System
  Identification
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Capturing Actionable Dynamics with Structured Latent Ordinary
  Differential Equations
Capturing Actionable Dynamics with Structured Latent Ordinary Differential Equations
Paidamoyo Chapfuwa
Sherri Rose
Lawrence Carin
Edward Meeds
Ricardo Henao
CML
22
1
0
25 Feb 2022
Bounded nonlinear forecasts of partially observed geophysical systems
  with physics-constrained deep learning
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
18
10
0
11 Feb 2022
Unsupervised Time-Series Representation Learning with Iterative Bilinear
  Temporal-Spectral Fusion
Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion
Ling Yang
linda Qiao
AI4TS
28
119
0
08 Feb 2022
Low-Rank Constraints for Fast Inference in Structured Models
Low-Rank Constraints for Fast Inference in Structured Models
Justin T. Chiu
Yuntian Deng
Alexander M. Rush
BDL
32
13
0
08 Jan 2022
Linear Variational State-Space Filtering
Linear Variational State-Space Filtering
Daniel Pfrommer
Nikolai Matni
30
1
0
04 Jan 2022
Estimating the Value-at-Risk by Temporal VAE
Estimating the Value-at-Risk by Temporal VAE
Robert Sicks
S. Grimm
R. Korn
Ivo Richert
18
6
0
03 Dec 2021
On the Stochastic Stability of Deep Markov Models
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Survey of Deep Learning Methods for Inverse Problems
Survey of Deep Learning Methods for Inverse Problems
S. Kamyab
Zihreh Azimifar
Rasool Sabzi
Paul Fieguth
21
3
0
07 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
32
21
0
26 Oct 2021
Unsupervised Learned Kalman Filtering
Unsupervised Learned Kalman Filtering
Guy Revach
Nir Shlezinger
Timur Locher
Xiaoyong Ni
Ruud J. G. van Sloun
Yonina C. Eldar
SSL
31
31
0
18 Oct 2021
Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
  Systems with Uncertainty
Physics-guided Deep Markov Models for Learning Nonlinear Dynamical Systems with Uncertainty
Wei Liu
Zhilu Lai
Kiran Bacsa
Eleni Chatzi
PINN
BDL
AI4CE
20
33
0
16 Oct 2021
Dynamical Wasserstein Barycenters for Time-series Modeling
Dynamical Wasserstein Barycenters for Time-series Modeling
Kevin C. Cheng
Shuchin Aeron
M. C. Hughes
Eric L. Miller
37
14
0
13 Oct 2021
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video
  Prediction
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction
Moitreya Chatterjee
Narendra Ahuja
A. Cherian
UQCV
VGen
BDL
42
17
0
06 Oct 2021
HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and
  Adaptive Sampling
HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and Adaptive Sampling
Xin Huang
Guy Rosman
Igor Gilitschenski
A. Jasour
Stephen G. McGill
J. Leonard
B. Williams
26
26
0
05 Oct 2021
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
  Dynamics
KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics
Guy Revach
Nir Shlezinger
Xiaoyong Ni
Adrià López Escoriza
Ruud J. G. van Sloun
Yonina C. Eldar
31
264
0
21 Jul 2021
Time Series Anomaly Detection for Cyber-Physical Systems via Neural
  System Identification and Bayesian Filtering
Time Series Anomaly Detection for Cyber-Physical Systems via Neural System Identification and Bayesian Filtering
Cheng Feng
Pengwei Tian
AI4TS
19
75
0
15 Jun 2021
A Benchmark of Dynamical Variational Autoencoders applied to Speech
  Spectrogram Modeling
A Benchmark of Dynamical Variational Autoencoders applied to Speech Spectrogram Modeling
Xiaoyu Bie
Laurent Girin
Simon Leglaive
Thomas Hueber
Xavier Alameda-Pineda
26
12
0
11 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
51
82
0
11 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent
  Input for Dynamic Systems
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
44
2
0
03 Jun 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
30
54
0
25 Feb 2021
12
Next