Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.00168
Cited By
Learning Optimized Risk Scores
1 October 2016
Berk Ustun
Cynthia Rudin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Optimized Risk Scores"
22 / 22 papers shown
Title
Probabilistic Scoring Lists for Interpretable Machine Learning
Jonas Hanselle
Stefan Heid
Zhigang Zeng
Eyke Hüllermeier
39
0
0
31 Jul 2024
MINTY: Rule-based Models that Minimize the Need for Imputing Features with Missing Values
Lena Stempfle
Fredrik D. Johansson
37
2
0
23 Nov 2023
Fast and Interpretable Mortality Risk Scores for Critical Care Patients
Chloe Qinyu Zhu
Muhang Tian
Lesia Semenova
Jiachang Liu
Jack Xu
Joseph Scarpa
Cynthia Rudin
36
3
0
21 Nov 2023
An Interpretable Loan Credit Evaluation Method Based on Rule Representation Learner
Zi-yu Chen
Xiaomeng Wang
Yuanjiang Huang
Tao Jia
46
1
0
03 Apr 2023
FasterRisk: Fast and Accurate Interpretable Risk Scores
Jiachang Liu
Chudi Zhong
Boxuan Li
Margo Seltzer
Cynthia Rudin
44
16
0
12 Oct 2022
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization
Zijie J. Wang
Chudi Zhong
Rui Xin
Takuya Takagi
Zhi Chen
Duen Horng Chau
Cynthia Rudin
Margo Seltzer
43
14
0
19 Sep 2022
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Vinith Suriyakumar
Marzyeh Ghassemi
Berk Ustun
44
6
0
04 Jun 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
40
11
0
13 May 2022
Framework for Evaluating Faithfulness of Local Explanations
S. Dasgupta
Nave Frost
Michal Moshkovitz
FAtt
124
61
0
01 Feb 2022
Learning Optimal Predictive Checklists
Haoran Zhang
Q. Morris
Berk Ustun
Marzyeh Ghassemi
26
11
0
02 Dec 2021
Shapley variable importance clouds for interpretable machine learning
Yilin Ning
M. Ong
Bibhas Chakraborty
B. Goldstein
Daniel Ting
Roger Vaughan
Nan Liu
FAtt
37
69
0
06 Oct 2021
Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
F. Xie
Han Yuan
Yilin Ning
M. Ong
Mengling Feng
Wynne Hsu
B. Chakraborty
Nan Liu
32
84
0
21 Jul 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
26
41
0
04 Jun 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
61
655
0
20 Mar 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
33
22
0
14 Feb 2021
Deep Cox Mixtures for Survival Regression
Chirag Nagpal
Steve Yadlowsky
Negar Rostamzadeh
Katherine A. Heller
CML
44
59
0
16 Jan 2021
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
64
84
0
08 May 2020
MonoNet: Towards Interpretable Models by Learning Monotonic Features
An-phi Nguyen
María Rodríguez Martínez
FAtt
18
13
0
30 Sep 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
32
54
0
24 Aug 2019
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
62
195
0
06 Apr 2017
Simple rules for complex decisions
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
D. Goldstein
CML
29
104
0
15 Feb 2017
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
114
49
0
19 Jul 2015
1