Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02132
Cited By
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding
7 October 2016
Dan Alistarh
Demjan Grubic
Jerry Li
Ryota Tomioka
Milan Vojnović
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding"
50 / 72 papers shown
Title
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
65
4
0
01 Aug 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
26
7
0
12 May 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
PolarAir: A Compressed Sensing Scheme for Over-the-Air Federated Learning
Michail Gkagkos
Krishna R. Narayanan
J. Chamberland
C. Georghiades
30
0
0
24 Jan 2023
Gossiped and Quantized Online Multi-Kernel Learning
Tomàs Ortega
Hamid Jafarkhani
21
5
0
24 Jan 2023
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
14
6
0
31 Oct 2022
Communication-Efficient Adam-Type Algorithms for Distributed Data Mining
Wenhan Xian
Feihu Huang
Heng-Chiao Huang
FedML
25
0
0
14 Oct 2022
A Fast Blockchain-based Federated Learning Framework with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
FedML
8
23
0
12 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
43
59
0
02 Aug 2022
Private Federated Submodel Learning with Sparsification
Sajani Vithana
S. Ulukus
FedML
22
10
0
31 May 2022
Communication-Efficient Distributionally Robust Decentralized Learning
Matteo Zecchin
Marios Kountouris
David Gesbert
18
9
0
31 May 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
29
31
0
30 May 2022
Tighter Regret Analysis and Optimization of Online Federated Learning
Dohyeok Kwon
Jonghwan Park
Songnam Hong
24
11
0
13 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
16
10
0
08 May 2022
PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems
Yuanxing Zhang
Langshi Chen
Siran Yang
Man Yuan
Hui-juan Yi
...
Yong Li
Dingyang Zhang
Wei Lin
Lin Qu
Bo Zheng
24
32
0
11 Apr 2022
Optimising Communication Overhead in Federated Learning Using NSGA-II
José Á. Morell
Z. Dahi
Francisco Chicano
Gabriel Luque
Enrique Alba
FedML
22
11
0
01 Apr 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
27
3
0
22 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
19
47
0
15 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
13
15
0
05 Feb 2022
Communication-Efficient Device Scheduling for Federated Learning Using Stochastic Optimization
Jake B. Perazzone
Shiqiang Wang
Mingyue Ji
Kevin S. Chan
FedML
19
71
0
19 Jan 2022
Stability Based Generalization Bounds for Exponential Family Langevin Dynamics
A. Banerjee
Tiancong Chen
Xinyan Li
Yingxue Zhou
13
8
0
09 Jan 2022
Accurate Neural Training with 4-bit Matrix Multiplications at Standard Formats
Brian Chmiel
Ron Banner
Elad Hoffer
Hilla Ben Yaacov
Daniel Soudry
MQ
23
22
0
19 Dec 2021
Optimal Rate Adaption in Federated Learning with Compressed Communications
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Jiangchuan Liu
FedML
28
38
0
13 Dec 2021
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
14
8
0
16 Nov 2021
Solving Multi-Arm Bandit Using a Few Bits of Communication
Osama A. Hanna
Lin F. Yang
Christina Fragouli
16
16
0
11 Nov 2021
Basis Matters: Better Communication-Efficient Second Order Methods for Federated Learning
Xun Qian
Rustem Islamov
M. Safaryan
Peter Richtárik
FedML
19
23
0
02 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
22
14
0
01 Nov 2021
BEV-SGD: Best Effort Voting SGD for Analog Aggregation Based Federated Learning against Byzantine Attackers
Xin-Yue Fan
Yue Wang
Yan Huo
Zhi Tian
FedML
17
23
0
18 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
44
44
0
07 Oct 2021
Solon: Communication-efficient Byzantine-resilient Distributed Training via Redundant Gradients
Lingjiao Chen
Leshang Chen
Hongyi Wang
S. Davidson
Edgar Dobriban
FedML
24
1
0
04 Oct 2021
Scalable Average Consensus with Compressed Communications
Taha Toghani
César A. Uribe
15
7
0
14 Sep 2021
Fast Federated Edge Learning with Overlapped Communication and Computation and Channel-Aware Fair Client Scheduling
M. E. Ozfatura
Junlin Zhao
Deniz Gündüz
14
14
0
14 Sep 2021
Bayesian AirComp with Sign-Alignment Precoding for Wireless Federated Learning
Chanhoo Park
Seunghoon Lee
Namyoon Lee
29
5
0
14 Sep 2021
Fundamental limits of over-the-air optimization: Are analog schemes optimal?
Shubham K. Jha
Prathamesh Mayekar
Himanshu Tyagi
17
7
0
11 Sep 2021
ErrorCompensatedX: error compensation for variance reduced algorithms
Hanlin Tang
Yao Li
Ji Liu
Ming Yan
17
9
0
04 Aug 2021
Learning a Neural Diff for Speech Models
J. Macoskey
Grant P. Strimel
Ariya Rastrow
13
2
0
03 Aug 2021
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
37
54
0
02 Aug 2021
Dynamic Neural Network Architectural and Topological Adaptation and Related Methods -- A Survey
Lorenz Kummer
AI4CE
32
0
0
28 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
16
21
0
02 Jul 2021
FedNL: Making Newton-Type Methods Applicable to Federated Learning
M. Safaryan
Rustem Islamov
Xun Qian
Peter Richtárik
FedML
14
77
0
05 Jun 2021
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
121
0
17 May 2021
DP-SIGNSGD: When Efficiency Meets Privacy and Robustness
Lingjuan Lyu
FedML
AAML
12
19
0
11 May 2021
Federated Learning: A Signal Processing Perspective
Tomer Gafni
Nir Shlezinger
Kobi Cohen
Yonina C. Eldar
H. Vincent Poor
FedML
21
128
0
31 Mar 2021
Learned Gradient Compression for Distributed Deep Learning
L. Abrahamyan
Yiming Chen
Giannis Bekoulis
Nikos Deligiannis
26
45
0
16 Mar 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
11
5
0
13 Mar 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
14
58
0
25 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
28
108
0
15 Feb 2021
Sparse-Push: Communication- & Energy-Efficient Decentralized Distributed Learning over Directed & Time-Varying Graphs with non-IID Datasets
Sai Aparna Aketi
Amandeep Singh
J. Rabaey
13
10
0
10 Feb 2021
CatFedAvg: Optimising Communication-efficiency and Classification Accuracy in Federated Learning
D. Sarkar
Sumit Rai
Ankur Narang
FedML
16
2
0
14 Nov 2020
1
2
Next