Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02415
Cited By
Automatic chemical design using a data-driven continuous representation of molecules
7 October 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
D. Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic chemical design using a data-driven continuous representation of molecules"
50 / 832 papers shown
Title
KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images
I. Cortés-Ciriano
A. Bender
MedIm
24
51
0
22 Nov 2018
Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction
Xavier Brumwell
Paul Sinz
K. Kim
Y. Qi
M. Hirn
16
8
0
21 Nov 2018
Machine learning enables polymer cloud-point engineering via inverse design
J. Kumar
Qianxiao Li
K. Y. Tang
Tonio Buonassisi
Anibal L. Gonzalez-Oyarce
J. Ye
17
66
0
21 Nov 2018
Uncertainty quantification of molecular property prediction using Bayesian neural network models
Seongok Ryu
Yongchan Kwon
W. Kim
BDL
13
2
0
19 Nov 2018
Concept-Oriented Deep Learning: Generative Concept Representations
Daniel T. Chang
DRL
GAN
BDL
24
12
0
15 Nov 2018
Graph Convolutional Neural Networks for Polymers Property Prediction
M. Zeng
J. Kumar
Zengfeng Zeng
R. Savitha
V. Chandrasekhar
K. Hippalgaonkar
GNN
6
29
0
15 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
25
719
0
06 Nov 2018
Hybrid Generative-Discriminative Models for Inverse Materials Design
Phuoc Nguyen
T. Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
AI4CE
PINN
8
6
0
31 Oct 2018
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
17
38
0
26 Oct 2018
Efficiently measuring a quantum device using machine learning
D. Lennon
H. Moon
L. Camenzind
Liuqi Yu
D. Zumbuhl
G. Briggs
Michael A. Osborne
E. Laird
N. Ares
9
67
0
23 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences
Payel Das
Kahini Wadhawan
Oscar Chang
Tom Sercu
Cicero Nogueira dos Santos
Matthew D Riemer
Vijil Chenthamarakshan
Inkit Padhi
Aleksandra Mojsilović
DRL
17
0
0
17 Oct 2018
Pairwise Augmented GANs with Adversarial Reconstruction Loss
Aibek Alanov
Max Kochurov
D. Yashkov
Dmitry Vetrov
GAN
14
3
0
11 Oct 2018
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
39
65
0
08 Oct 2018
Exascale Deep Learning for Climate Analytics
Thorsten Kurth
Sean Treichler
Josh Romero
M. Mudigonda
Nathan Luehr
...
Michael A. Matheson
J. Deslippe
M. Fatica
P. Prabhat
Michael Houston
BDL
11
260
0
03 Oct 2018
Taming VAEs
Danilo Jimenez Rezende
Fabio Viola
DRL
CML
13
182
0
01 Oct 2018
Encoding Robust Representation for Graph Generation
Dongmian Zou
Gilad Lerman
GNN
19
0
0
28 Sep 2018
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks
I. Cortés-Ciriano
A. Bender
OOD
UQCV
19
60
0
24 Sep 2018
Powerful, transferable representations for molecules through intelligent task selection in deep multitask networks
Clyde Fare
Lukas Turcani
Edward O. Pyzer-Knapp
22
13
0
17 Sep 2018
Molecular Hypergraph Grammar with its Application to Molecular Optimization
Hiroshi Kajino
12
102
0
08 Sep 2018
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
12
206
0
07 Sep 2018
Latent Molecular Optimization for Targeted Therapeutic Design
Tristan Aumentado-Armstrong
15
41
0
05 Sep 2018
Scalable Population Synthesis with Deep Generative Modeling
S. Borysov
Jeppe Rich
Francisco Câmara Pereira
6
57
0
21 Aug 2018
Machine Learning Promoting Extreme Simplification of Spectroscopy Equipment
Jianchao Lee
Qiannan Duan
Sifan Bi
Ruen Luo
Yachao Lian
...
Ruixing Tian
Jiayuan Chen
Guodong Ma
Jinhong Gao
Zhaoyi Xu
9
2
0
06 Aug 2018
Improving Chemical Autoencoder Latent Space and Molecular De novo Generation Diversity with Heteroencoders
E. Bjerrum
Boris Sattarov
BDL
14
147
0
25 Jun 2018
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Shengchao Liu
M. F. Demirel
Yingyu Liang
GNN
NAI
13
191
0
24 Jun 2018
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry
X. Xing
Ruiqi Gao
Tian Han
Song-Chun Zhu
Ying Nian Wu
DRL
19
28
0
16 Jun 2018
Molecular generative model based on conditional variational autoencoder for de novo molecular design
Jaechang Lim
Seongok Ryu
Jin Woo Kim
W. Kim
BDL
DRL
17
325
0
15 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
203
885
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
21
906
0
30 May 2018
Deep Graph Translation
Xiaojie Guo
Lingfei Wu
Liang Zhao
GNN
22
32
0
25 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
6
449
0
23 May 2018
DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors
Arash Vahdat
Evgeny Andriyash
W. Macready
13
49
0
18 May 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
157
183
0
30 Apr 2018
Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Dendrite Suppression with Li Metal Anode
Zeeshan Ahmad
T. Xie
C. Maheshwari
Jeffrey C. Grossman
V. Viswanathan
13
187
0
12 Apr 2018
Differentiable Learning of Quantum Circuit Born Machine
Jin-Guo Liu
Lei Wang
11
230
0
11 Apr 2018
Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks
Shahar Harel
Kira Radinsky
9
21
0
08 Apr 2018
Structured Disentangled Representations
Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan Willem van de Meent
OOD
CML
BDL
DRL
21
165
0
06 Apr 2018
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks
Kun Xu
Lingfei Wu
Zhiguo Wang
Yansong Feng
Michael Witbrock
V. Sheinin
GNN
25
171
0
03 Apr 2018
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery
Kristina Preuer
Philipp Renz
Thomas Unterthiner
Sepp Hochreiter
G. Klambauer
MedIm
10
324
0
26 Mar 2018
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
29
654
0
08 Mar 2018
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
22
324
0
24 Feb 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
41
831
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
22
211
0
14 Feb 2018
Edge Attention-based Multi-Relational Graph Convolutional Networks
Chao Shang
Qinqing Liu
Ko-Shin Chen
Jiangwen Sun
Jin Lu
Jinfeng Yi
J. Bi
GNN
27
93
0
14 Feb 2018
Molecular Structure Extraction From Documents Using Deep Learning
Joshua Staker
Kyle Marshall
Robert Abel
Carolyn McQuaw
19
73
0
14 Feb 2018
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei
J. Frellsen
DRL
9
66
0
13 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,338
0
12 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
19
833
0
09 Feb 2018
DeepDTA: Deep Drug-Target Binding Affinity Prediction
Hakime Öztürk
E. Olmez
Arzucan Özgür
17
1,051
0
30 Jan 2018
Previous
1
2
3
...
15
16
17
Next