ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.05392
  4. Cited By
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models

AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models

18 October 2016
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
    GP
    BDL
ArXivPDFHTML

Papers citing "AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models"

6 / 6 papers shown
Title
Gaussian Process-Gated Hierarchical Mixtures of Experts
Gaussian Process-Gated Hierarchical Mixtures of Experts
Yuhao Liu
Marzieh Ajirak
P. Djuric
MoE
16
1
0
09 Feb 2023
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
11
31
0
02 Nov 2021
Bayesian optimization of distributed neurodynamical controller models
  for spatial navigation
Bayesian optimization of distributed neurodynamical controller models for spatial navigation
Armin Hadzic
Grace M. Hwang
Kechen Zhang
Kevin M. Schultz
J. Monaco
19
5
0
31 Oct 2021
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
22
68
0
06 Jun 2018
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,068
0
01 Nov 2017
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
141
0
14 Oct 2016
1