Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
1610.07524
Cited By
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
24 October 2016
Alexandra Chouldechova
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fair prediction with disparate impact: A study of bias in recidivism prediction instruments"
50 / 866 papers shown
Title
Predictive Multiplicity in Classification
Charles Marx
Flavio du Pin Calmon
Berk Ustun
224
162
0
14 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
83
11
0
09 Sep 2019
Optimizing Generalized Rate Metrics through Game Equilibrium
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
69
4
0
06 Sep 2019
Quantifying Infra-Marginality and Its Trade-off with Group Fairness
Arpita Biswas
Siddharth Barman
Amit Deshpande
Amit Sharma
41
3
0
03 Sep 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
144
55
0
24 Aug 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
764
4,688
0
23 Aug 2019
Data Management for Causal Algorithmic Fairness
Babak Salimi
B. Howe
Dan Suciu
CML
FaML
104
24
0
20 Aug 2019
Towards Reducing Biases in Combining Multiple Experts Online
Yi Sun
Iván Díaz
Alfredo Cuesta-Infante
K. Veeramachaneni
FaML
57
0
0
19 Aug 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
167
22
0
15 Aug 2019
With Malice Towards None: Assessing Uncertainty via Equalized Coverage
Yaniv Romano
Rina Foygel Barber
C. Sabatti
Emmanuel J. Candès
UQCV
208
70
0
15 Aug 2019
Fair quantile regression
Dana Yang
John D. Lafferty
D. Pollard
61
6
0
19 Jul 2019
A Causal Bayesian Networks Viewpoint on Fairness
Silvia Chiappa
William S. Isaac
FaML
102
63
0
15 Jul 2019
Counterfactual Reasoning for Fair Clinical Risk Prediction
Stephen Pfohl
Tony Duan
D. Ding
N. Shah
OOD
CML
81
60
0
14 Jul 2019
Fair Kernel Regression via Fair Feature Embedding in Kernel Space
Austin Okray
Hui Hu
Chao Lan
FaML
88
4
0
04 Jul 2019
Operationalizing Individual Fairness with Pairwise Fair Representations
Preethi Lahoti
Krishna P. Gummadi
Gerhard Weikum
FaML
155
108
0
02 Jul 2019
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Niki Kilbertus
Philip J. Ball
Matt J. Kusner
Adrian Weller
Ricardo M. A. Silva
137
58
0
01 Jul 2019
Training individually fair ML models with Sensitive Subspace Robustness
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaML
OOD
118
120
0
28 Jun 2019
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
134
25
0
27 Jun 2019
Fairness criteria through the lens of directed acyclic graphical models
Benjamin R. Baer
Daniel E. Gilbert
M. Wells
FaML
80
6
0
26 Jun 2019
Age and gender bias in pedestrian detection algorithms
Martim Brandao
86
48
0
25 Jun 2019
FlipTest: Fairness Testing via Optimal Transport
Emily Black
Samuel Yeom
Matt Fredrikson
203
96
0
21 Jun 2019
Mitigating Bias in Algorithmic Hiring: Evaluating Claims and Practices
Manish Raghavan
Solon Barocas
Jon M. Kleinberg
K. Levy
MLAU
FaML
141
570
0
21 Jun 2019
Inherent Tradeoffs in Learning Fair Representations
Han Zhao
Geoffrey J. Gordon
FaML
183
225
0
19 Jun 2019
The Price of Local Fairness in Multistage Selection
V. Emelianov
G. Arvanitakis
Nicolas Gast
Krishna P. Gummadi
Patrick Loiseau
77
18
0
15 Jun 2019
Principled Frameworks for Evaluating Ethics in NLP Systems
Shrimai Prabhumoye
Elijah Mayfield
A. Black
60
7
0
14 Jun 2019
Understanding artificial intelligence ethics and safety
David Leslie
FaML
AI4TS
82
378
0
11 Jun 2019
ProPublica's COMPAS Data Revisited
M. Barenstein
FaML
111
52
0
11 Jun 2019
Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns
YooJung Choi
G. Farnadi
Behrouz Babaki
Karen Ullrich
FaML
82
27
0
10 Jun 2019
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
Laurens van der Maaten
156
269
0
06 Jun 2019
Near Neighbor: Who is the Fairest of Them All?
Sariel Har-Peled
S. Mahabadi
87
23
0
06 Jun 2019
Assessing Disparate Impacts of Personalized Interventions: Identifiability and Bounds
Nathan Kallus
Angela Zhou
99
11
0
04 Jun 2019
Disparate Vulnerability to Membership Inference Attacks
B. Kulynych
Mohammad Yaghini
Giovanni Cherubin
Michael Veale
Carmela Troncoso
183
43
0
02 Jun 2019
Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
Nathan Kallus
Xiaojie Mao
Angela Zhou
FaML
149
163
0
01 Jun 2019
Metric Learning for Individual Fairness
Christina Ilvento
FaML
152
97
0
01 Jun 2019
Optimized Score Transformation for Consistent Fair Classification
Dennis L. Wei
Karthikeyan N. Ramamurthy
Flavio du Pin Calmon
79
16
0
31 May 2019
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Alekh Agarwal
Miroslav Dudík
Zhiwei Steven Wu
FaML
147
257
0
30 May 2019
Efficient candidate screening under multiple tests and implications for fairness
Lee Cohen
Zachary Chase Lipton
Yishay Mansour
73
34
0
27 May 2019
Achieving Fairness in Stochastic Multi-armed Bandit Problem
Vishakha Patil
Ganesh Ghalme
V. Nair
Y. Narahari
FaML
105
5
0
27 May 2019
Equal Opportunity and Affirmative Action via Counterfactual Predictions
Yixin Wang
Dhanya Sridhar
David M. Blei
FaML
91
21
0
26 May 2019
Compositional Fairness Constraints for Graph Embeddings
A. Bose
William L. Hamilton
FaML
182
266
0
25 May 2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FaML
FedML
160
89
0
25 May 2019
Contrastive Fairness in Machine Learning
Tapabrata (Rohan) Chakraborty
A. Patra
Alison Noble
FaML
158
8
0
17 May 2019
Fairness in Machine Learning with Tractable Models
Michael Varley
Vaishak Belle
FaML
77
11
0
16 May 2019
Fair Classification and Social Welfare
Lily Hu
Yiling Chen
FaML
125
94
0
01 May 2019
Learning Fair Representations via an Adversarial Framework
Rui Feng
Yang Yang
Yuehan Lyu
Chenhao Tan
Luke Huan
Chunping Wang
FaML
96
56
0
30 Apr 2019
Tracking and Improving Information in the Service of Fairness
Sumegha Garg
Michael P. Kim
Omer Reingold
FaML
63
14
0
22 Apr 2019
Predicting Brazilian court decisions
André Lage-Freitas
H. Allende-Cid
O. Santana
Lívia de Oliveira-Lage
ELM
104
42
0
20 Apr 2019
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
Ángel Alexander Cabrera
Will Epperson
Fred Hohman
Minsuk Kahng
Jamie Morgenstern
Duen Horng Chau
FaML
197
190
0
10 Apr 2019
Attraction-Repulsion clustering with applications to fairness
E. del Barrio
Hristo Inouzhe
Jean-Michel Loubes
FaML
109
2
0
10 Apr 2019
What's in a Name? Reducing Bias in Bios without Access to Protected Attributes
Alexey Romanov
Maria De-Arteaga
Hanna M. Wallach
J. Chayes
C. Borgs
Alexandra Chouldechova
S. Geyik
K. Kenthapadi
Anna Rumshisky
Adam Tauman Kalai
87
82
0
10 Apr 2019
Previous
1
2
3
...
14
15
16
17
18
Next