ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09033
  4. Cited By
Operator Variational Inference
v1v2v3 (latest)

Operator Variational Inference

27 October 2016
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
ArXiv (abs)PDFHTML

Papers citing "Operator Variational Inference"

50 / 72 papers shown
Title
On Divergence Measures for Training GFlowNets
On Divergence Measures for Training GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Diego Mesquita
BDL
154
3
0
12 Oct 2024
Kernel Semi-Implicit Variational Inference
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
57
7
0
29 May 2024
SAVAE: Leveraging the variational Bayes autoencoder for survival
  analysis
SAVAE: Leveraging the variational Bayes autoencoder for survival analysis
Patricia A. Apellániz
J. Parras
Santiago Zazo
CMLDRLBDL
10
1
0
22 Dec 2023
Neural Operator Variational Inference based on Regularized Stein
  Discrepancy for Deep Gaussian Processes
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
50
1
0
22 Sep 2023
Semi-Implicit Variational Inference via Score Matching
Semi-Implicit Variational Inference via Score Matching
Longlin Yu
Chuxu Zhang
77
17
0
19 Aug 2023
Variational Inference with Gaussian Score Matching
Variational Inference with Gaussian Score Matching
Chirag Modi
C. Margossian
Yuling Yao
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
83
13
0
15 Jul 2023
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
61
4
0
04 Nov 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
217
89
0
02 Oct 2022
Adversarial Bayesian Simulation
Adversarial Bayesian Simulation
YueXing Wang
Veronika Rovcková
GANBDL
100
5
0
25 Aug 2022
Sliced Wasserstein Variational Inference
Sliced Wasserstein Variational Inference
Mingxuan Yi
Song Liu
68
20
0
26 Jul 2022
Gradient-Free Kernel Stein Discrepancy
Gradient-Free Kernel Stein Discrepancy
Matthew A. Fisher
Chris J. Oates
64
5
0
06 Jul 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CMLDRL
63
2
0
20 Jun 2022
Measuring Sample Quality in Algorithms for Intractable Normalizing
  Function Problems
Measuring Sample Quality in Algorithms for Intractable Normalizing Function Problems
Bokgyeong Kang
John Hughes
M. Haran
TPM
68
1
0
10 Sep 2021
Adversarial Stein Training for Graph Energy Models
Adversarial Stein Training for Graph Energy Models
Shiv Shankar
BDL
44
0
0
30 Aug 2021
Neural Variational Gradient Descent
Neural Variational Gradient Descent
L. Langosco
Vincent Fortuin
Heiko Strathmann
BDL
111
20
0
22 Jul 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
101
35
0
07 May 2021
Variational inference with a quantum computer
Variational inference with a quantum computer
Marcello Benedetti
Brian Coyle
Mattia Fiorentini
M. Lubasch
Matthias Rosenkranz
BDL
83
38
0
11 Mar 2021
End-To-End Dilated Variational Autoencoder with Bottleneck
  Discriminative Loss for Sound Morphing -- A Preliminary Study
End-To-End Dilated Variational Autoencoder with Bottleneck Discriminative Loss for Sound Morphing -- A Preliminary Study
Matteo Lionello
Hendrik Purwins
54
0
0
19 Nov 2020
Measure Transport with Kernel Stein Discrepancy
Measure Transport with Kernel Stein Discrepancy
Matthew A. Fisher
T. Nolan
Matthew M. Graham
D. Prangle
Chris J. Oates
OT
124
15
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
231
54
0
20 Oct 2020
Generate High Resolution Images With Generative Variational Autoencoder
Abhinav Sagar
GANDRL
28
3
0
12 Aug 2020
Stochastic Stein Discrepancies
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
113
38
0
06 Jul 2020
Sliced Kernelized Stein Discrepancy
Sliced Kernelized Stein Discrepancy
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
94
37
0
30 Jun 2020
Scalable Control Variates for Monte Carlo Methods via Stochastic
  Optimization
Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization
Shijing Si
Chris J. Oates
Andrew B. Duncan
Lawrence Carin
F. Briol
BDL
58
21
0
12 Jun 2020
Bayesian Sparsification Methods for Deep Complex-valued Networks
Bayesian Sparsification Methods for Deep Complex-valued Networks
Ivan Nazarov
Evgeny Burnaev
BDL
36
0
0
25 Mar 2020
Generalized Bayesian Filtering via Sequential Monte Carlo
Generalized Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
Ömer Deniz Akyildiz
Theodoros Damoulas
A. M. Johansen
65
4
0
23 Feb 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based
  Models without Sampling
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
R. Zemel
67
14
0
13 Feb 2020
A Kernel Stein Test for Comparing Latent Variable Models
A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa
Wittawat Jitkrittum
Lester W. Mackey
Kenji Fukumizu
Arthur Gretton
88
13
0
01 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
94
416
0
25 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
80
93
0
19 Jun 2019
Kernelized Complete Conditional Stein Discrepancy
Kernelized Complete Conditional Stein Discrepancy
Raghav Singhal
Xintian Han
S. Lahlou
Rajesh Ranganath
87
7
0
09 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
109
106
0
03 Apr 2019
Gaussian Mean Field Regularizes by Limiting Learned Information
Gaussian Mean Field Regularizes by Limiting Learned Information
Julius Kunze
Louis Kirsch
H. Ritter
David Barber
FedMLMLT
49
2
0
12 Feb 2019
GO Gradient for Expectation-Based Objectives
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
150
16
0
17 Jan 2019
Posterior inference unchained with EL_2O
Posterior inference unchained with EL_2O
U. Seljak
Byeonghee Yu
49
10
0
14 Jan 2019
Simple, Distributed, and Accelerated Probabilistic Programming
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
85
56
0
05 Nov 2018
Doubly Semi-Implicit Variational Inference
Doubly Semi-Implicit Variational Inference
Dmitry Molchanov
V. Kharitonov
Artem Sobolev
Dmitry Vetrov
BDL
87
40
0
05 Oct 2018
A Spectral Approach to Gradient Estimation for Implicit Distributions
A Spectral Approach to Gradient Estimation for Implicit Distributions
Jiaxin Shi
Shengyang Sun
Jun Zhu
87
92
0
07 Jun 2018
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with
  $β$-Divergences
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with βββ-Divergences
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
78
58
0
06 Jun 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDLDRL
111
42
0
29 May 2018
A particle-based variational approach to Bayesian Non-negative Matrix
  Factorization
A particle-based variational approach to Bayesian Non-negative Matrix Factorization
M. A. Masood
Finale Doshi-Velez
63
11
0
16 Mar 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
120
272
0
23 Feb 2018
Variational Inference over Non-differentiable Cardiac Simulators using
  Bayesian Optimization
Variational Inference over Non-differentiable Cardiac Simulators using Bayesian Optimization
Adam McCarthy
Blanca Rodriguez
A. Mincholé
155
5
0
09 Dec 2017
Stochastic Maximum Likelihood Optimization via Hypernetworks
Stochastic Maximum Likelihood Optimization via Hypernetworks
Abdul-Saboor Sheikh
Kashif Rasul
A. Merentitis
Urs M. Bergmann
109
18
0
04 Dec 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
233
698
0
15 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRLBDL
101
80
0
01 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
129
57
0
04 Sep 2017
Learning Model Reparametrizations: Implicit Variational Inference by
  Fitting MCMC distributions
Learning Model Reparametrizations: Implicit Variational Inference by Fitting MCMC distributions
Michalis K. Titsias
BDL
72
23
0
04 Aug 2017
Adversarial Variational Optimization of Non-Differentiable Simulators
Adversarial Variational Optimization of Non-Differentiable Simulators
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
173
66
0
22 Jul 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GANBDL
85
82
0
20 Jul 2017
12
Next