ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.00336
  4. Cited By
Stochastic Variational Deep Kernel Learning
v1v2 (latest)

Stochastic Variational Deep Kernel Learning

1 November 2016
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Stochastic Variational Deep Kernel Learning"

45 / 95 papers shown
Title
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
  via Gaussian Processes
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDLGNN
89
18
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
90
290
0
24 Feb 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
22
0
21 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
92
61
0
19 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
104
24
0
10 Feb 2020
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
John Mitros
Brian Mac Namee
UQCVBDL
91
30
0
03 Dec 2019
Online tuning and light source control using a physics-informed Gaussian
  process Adi
Online tuning and light source control using a physics-informed Gaussian process Adi
A. Hanuka
J. Duris
J. Shtalenkova
Dylan Kennedy
A. Edelen
Daniel Ratner
Xiaobiao Huang
49
20
0
04 Nov 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
154
202
0
28 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDLAI4TS
81
38
0
17 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
61
9
0
12 Oct 2019
Deep Kernel Learning via Random Fourier Features
Deep Kernel Learning via Random Fourier Features
Jiaxuan Xie
Fanghui Liu
Kaijie Wang
Xiaolin Huang
46
19
0
07 Oct 2019
Efficient Transfer Bayesian Optimization with Auxiliary Information
Efficient Transfer Bayesian Optimization with Auxiliary Information
Tomoharu Iwata
Takuma Otsuka
64
2
0
17 Sep 2019
A Fine-Grained Spectral Perspective on Neural Networks
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
118
113
0
24 Jul 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
75
77
0
19 Jun 2019
Non-Parametric Calibration for Classification
Non-Parametric Calibration for Classification
Jonathan Wenger
Hedvig Kjellström
Rudolph Triebel
UQCV
114
82
0
12 Jun 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
185
289
0
13 Feb 2019
Learnable Embedding Space for Efficient Neural Architecture Compression
Learnable Embedding Space for Efficient Neural Architecture Compression
Shengcao Cao
Xiaofang Wang
Kris Kitani
79
43
0
01 Feb 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDLFedMLMLT
100
29
0
23 Jan 2019
Physics-informed deep generative models
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CEPINN
87
59
0
09 Dec 2018
A Gaussian Process perspective on Convolutional Neural Networks
A Gaussian Process perspective on Convolutional Neural Networks
Anastasia Borovykh
81
19
0
25 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
121
310
0
11 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
149
1,105
0
28 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
136
697
0
03 Jul 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
119
70
0
06 Jun 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
78
75
0
28 May 2018
Calibrating Deep Convolutional Gaussian Processes
Calibrating Deep Convolutional Gaussian Processes
Gia-Lac Tran
Edwin V. Bonilla
John P. Cunningham
Pietro Michiardi
Maurizio Filippone
BDLUQCV
70
43
0
26 May 2018
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by
  Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Neal Jean
Sang Michael Xie
Stefano Ermon
BDLSSL
75
76
0
26 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
171
561
0
30 Apr 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
67
96
0
16 Mar 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
144
41
0
20 Feb 2018
DeepKSPD: Learning Kernel-matrix-based SPD Representation for
  Fine-grained Image Recognition
DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition
M. Engin
Lei Wang
Luping Zhou
Xinwang Liu
60
54
0
11 Nov 2017
Scalable Log Determinants for Gaussian Process Kernel Learning
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
58
95
0
09 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
154
1,100
0
01 Nov 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor
  Train Decomposition
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
87
62
0
19 Oct 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
90
132
0
06 Sep 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDLAAML
117
172
0
08 Jul 2017
Efficient Correlated Topic Modeling with Topic Embedding
Efficient Correlated Topic Modeling with Topic Embedding
Junxian He
Zhiting Hu
Taylor Berg-Kirkpatrick
Ying Huang
Eric Xing
57
48
0
01 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
301
5,882
0
14 Jun 2017
Bayesian GAN
Bayesian GAN
Yunus Saatci
A. Wilson
GAN
91
133
0
26 May 2017
The Kernel Mixture Network: A Nonparametric Method for Conditional
  Density Estimation of Continuous Random Variables
The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
E. Maris
BDL
186
47
0
19 May 2017
Multimodal Word Distributions
Multimodal Word Distributions
Ben Athiwaratkun
A. Wilson
87
90
0
27 Apr 2017
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
104
105
0
27 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
58
144
0
14 Oct 2016
Previous
12