Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01310
Cited By
v1
v2 (latest)
Achieving Shrinkage in a Time-Varying Parameter Model Framework
4 November 2016
A. Bitto
Sylvia Fruhwirth-Schnatter
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Achieving Shrinkage in a Time-Varying Parameter Model Framework"
17 / 17 papers shown
Title
A Structural Text-Based Scaling Model for Analyzing Political Discourse
Jan Vávra
Bernd Hans-Konrad Prostmaier
Bettina Grün
Paul Hofmarcher
27
1
0
14 Oct 2024
The ARR2 prior: flexible predictive prior definition for Bayesian auto-regressions
David Kohns
Noa Kallioinen
Yann McLatchie
Aki Vehtari
69
1
0
30 May 2024
Bayesian Nonlinear Regression using Sums of Simple Functions
Florian Huber
49
1
0
04 Dec 2023
A Bayesian Survival Model for Time-Varying Coefficients and Unobserved Heterogeneity
Peter Knaus
Daniel T. Winkler
G. Jomrich
147
1
0
22 Jun 2022
General Bayesian time-varying parameter VARs for predicting government bond yields
M. Fischer
Niko Hauzenberger
Florian Huber
Michael Pfarrhofer
24
0
0
26 Feb 2021
Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices
Nadja Klein
M. Smith
David J. Nott
BDL
AI4TS
54
27
0
05 Oct 2020
Dynamic sparsity on dynamic regression models
Paloma W. Uribe
H. Lopes
23
17
0
29 Sep 2020
Inference in Bayesian Additive Vector Autoregressive Tree Models
Florian Huber
Luca Rossini
73
23
0
29 Jun 2020
Bayesian forecasting of multivariate time series: Scalability, structure uncertainty and decisions
M. West
BDL
AI4TS
73
46
0
21 Nov 2019
Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models
Niko Hauzenberger
Florian Huber
Gary Koop
Luca Onorante
AI4TS
91
37
0
23 Oct 2019
Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP
Peter Knaus
Angela Bitto-Nemling
A. Cadonna
Sylvia Fruhwirth-Schnatter
106
22
0
16 Jul 2019
Horseshoe Regularization for Machine Learning in Complex and Deep Models
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
87
15
0
24 Apr 2019
Bayesian dynamic variable selection in high dimensions
Gary Koop
Dimitris Korobilis
57
39
0
09 Sep 2018
Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?
Martin Feldkircher
Luis Gruber
Florian Huber
G. Kastner
68
8
0
01 Nov 2017
Sparse Bayesian vector autoregressions in huge dimensions
G. Kastner
Florian Huber
76
95
0
11 Apr 2017
Sparse Bayesian time-varying covariance estimation in many dimensions
G. Kastner
70
102
0
30 Aug 2016
Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models
Florian Huber
G. Kastner
Martin Feldkircher
52
43
0
15 Jul 2016
1