ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02731
  4. Cited By
Variational Lossy Autoencoder
v1v2 (latest)

Variational Lossy Autoencoder

8 November 2016
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
    DRLSSLGAN
ArXiv (abs)PDFHTML

Papers citing "Variational Lossy Autoencoder"

47 / 397 papers shown
Title
Degeneration in VAE: in the Light of Fisher Information Loss
Degeneration in VAE: in the Light of Fisher Information Loss
Huangjie Zheng
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
DRL
139
17
0
19 Feb 2018
DVAE++: Discrete Variational Autoencoders with Overlapping
  Transformations
DVAE++: Discrete Variational Autoencoders with Overlapping Transformations
Arash Vahdat
W. Macready
Zhengbing Bian
Amir Khoshaman
Evgeny Andriyash
201
79
0
14 Feb 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
398
205
0
13 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDLDRL
564
251
0
07 Feb 2018
Improving Variational Encoder-Decoders in Dialogue Generation
Improving Variational Encoder-Decoders in Dialogue Generation
Xiaoyu Shen
Hui Su
Shuzi Niu
Vera Demberg
DRL
141
101
0
06 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative
  Model
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
219
374
0
18 Jan 2018
PixelSNAIL: An Improved Autoregressive Generative Model
PixelSNAIL: An Improved Autoregressive Generative ModelInternational Conference on Machine Learning (ICML), 2017
Xi Chen
Nikhil Mishra
Mostafa Rohaninejad
Pieter Abbeel
DRLDiffMBDLGAN
208
296
0
28 Dec 2017
Nonparametric Inference for Auto-Encoding Variational Bayes
Nonparametric Inference for Auto-Encoding Variational Bayes
Erik Bodin
Iman Malik
Carl Henrik Ek
Neill D. F. Campbell
DRLBDL
140
17
0
18 Dec 2017
Generating and designing DNA with deep generative models
Generating and designing DNA with deep generative models
N. Killoran
Leo J. Lee
Andrew Delong
David Duvenaud
B. Frey
AI4CE
119
156
0
17 Dec 2017
Online Learning with Gated Linear Networks
Online Learning with Gated Linear Networks
J. Veness
Tor Lattimore
Avishkar Bhoopchand
A. Grabska-Barwinska
Christopher Mattern
Peter Toth
232
26
0
05 Dec 2017
Spatial PixelCNN: Generating Images from Patches
Spatial PixelCNN: Generating Images from Patches
Nader Akoury
Anh Totti Nguyen
106
4
0
03 Dec 2017
Auxiliary Guided Autoregressive Variational Autoencoders
Auxiliary Guided Autoregressive Variational Autoencoders
Thomas Lucas
Jakob Verbeek
GANDRL
124
21
0
30 Nov 2017
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Parallel WaveNet: Fast High-Fidelity Speech Synthesis
Aaron van den Oord
Yazhe Li
Igor Babuschkin
Karen Simonyan
Oriol Vinyals
...
Alex Graves
Helen King
T. Walters
Dan Belov
Demis Hassabis
380
890
0
28 Nov 2017
Scalable Recollections for Continual Lifelong Learning
Scalable Recollections for Continual Lifelong Learning
Matthew D Riemer
Tim Klinger
Djallel Bouneffouf
M. Franceschini
CLL
211
71
0
17 Nov 2017
Latent Constraints: Learning to Generate Conditionally from
  Unconditional Generative Models
Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Jesse Engel
Matthew Hoffman
Adam Roberts
DRL
190
148
0
15 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
532
770
0
15 Nov 2017
Z-Forcing: Training Stochastic Recurrent Networks
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
190
193
0
15 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
619
6,259
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRLBDL
342
82
0
01 Nov 2017
On the challenges of learning with inference networks on sparse,
  high-dimensional data
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CMLBDL
139
87
0
17 Oct 2017
Deconvolutional Latent-Variable Model for Text Sequence Matching
Deconvolutional Latent-Variable Model for Text Sequence Matching
Dinghan Shen
Yizhe Zhang
Ricardo Henao
Qinliang Su
Lawrence Carin
DRLBDL
253
69
0
21 Sep 2017
A learning framework for winner-take-all networks with stochastic
  synapses
A learning framework for winner-take-all networks with stochastic synapsesNeural Computation (Neural Comput.), 2017
Hesham Mostafa
Gert Cauwenberghs
BDL
177
14
0
14 Aug 2017
GLSR-VAE: Geodesic Latent Space Regularization for Variational
  AutoEncoder Architectures
GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
Gaëtan Hadjeres
Frank Nielsen
F. Pachet
DRL
164
68
0
14 Jul 2017
Adversarially Regularized Autoencoders
Adversarially Regularized Autoencoders
Jiaqi Zhao
Yoon Kim
Kelly Zhang
Alexander M. Rush
Yann LeCun
DRLGNNGAN
156
79
0
13 Jun 2017
Channel-Recurrent Autoencoding for Image Modeling
Channel-Recurrent Autoencoding for Image Modeling
Wenling Shang
Kihyuk Sohn
Yuandong Tian
DRLGAN
124
3
0
12 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
401
472
0
07 Jun 2017
On Unifying Deep Generative Models
On Unifying Deep Generative ModelsInternational Conference on Learning Representations (ICLR), 2017
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRLGAN
345
128
0
02 Jun 2017
PixelGAN Autoencoders
PixelGAN AutoencodersNeural Information Processing Systems (NeurIPS), 2017
Alireza Makhzani
Brendan J. Frey
GAN
153
102
0
02 Jun 2017
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded ImaginationInternational Conference on Learning Representations (ICLR), 2017
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
468
146
0
30 May 2017
Multi-Level Variational Autoencoder: Learning Disentangled
  Representations from Grouped Observations
Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations
Diane Bouchacourt
Ryota Tomioka
Sebastian Nowozin
BDLOODDRL
261
327
0
24 May 2017
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image
  Generation
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation
Lei Cai
Hongyang Gao
Shuiwang Ji
147
78
0
19 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
450
675
0
19 May 2017
Learning Multimodal Transition Dynamics for Model-Based Reinforcement
  Learning
Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
OffRL
312
32
0
01 May 2017
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders
Jesse Engel
Cinjon Resnick
Adam Roberts
Sander Dieleman
Douglas Eck
Karen Simonyan
Mohammad Norouzi
235
695
0
05 Apr 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
220
28
0
03 Apr 2017
Prediction and Control with Temporal Segment Models
Prediction and Control with Temporal Segment Models
Nikhil Mishra
Pieter Abbeel
Igor Mordatch
BDL
123
66
0
12 Mar 2017
Towards Deeper Understanding of Variational Autoencoding Models
Towards Deeper Understanding of Variational Autoencoding Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
188
162
0
28 Feb 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDLGANOODDRL
198
75
0
27 Feb 2017
Improved Variational Autoencoders for Text Modeling using Dilated
  Convolutions
Improved Variational Autoencoders for Text Modeling using Dilated ConvolutionsInternational Conference on Machine Learning (ICML), 2017
Zichao Yang
Zhiting Hu
Ruslan Salakhutdinov
Taylor Berg-Kirkpatrick
265
395
0
27 Feb 2017
A Hybrid Convolutional Variational Autoencoder for Text Generation
A Hybrid Convolutional Variational Autoencoder for Text GenerationConference on Empirical Methods in Natural Language Processing (EMNLP), 2017
Stanislau Semeniuta
Aliaksei Severyn
Erhardt Barth
170
265
0
08 Feb 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural NetworksInternational Conference on Machine Learning (ICML), 2017
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
442
861
0
19 Jan 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial NetworksInternational Conference on Machine Learning (ICML), 2017
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GANBDL
364
556
0
17 Jan 2017
NIPS 2016 Tutorial: Generative Adversarial Networks
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
GAN
506
1,794
0
31 Dec 2016
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
PixelCNN Models with Auxiliary Variables for Natural Image Modeling
Alexander Kolesnikov
Christoph H. Lampert
GAN
160
3
0
24 Dec 2016
Piecewise Latent Variables for Neural Variational Text Processing
Piecewise Latent Variables for Neural Variational Text Processing
Iulian Serban
Alexander Ororbia
Joelle Pineau
Aaron Courville
DRLBDL
340
2
0
01 Dec 2016
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRLSSLBDL
226
353
0
15 Nov 2016
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
296
697
0
08 Nov 2016
Previous
12345678