ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03130
  4. Cited By
Computationally Efficient Target Classification in Multispectral Image
  Data with Deep Neural Networks

Computationally Efficient Target Classification in Multispectral Image Data with Deep Neural Networks

9 November 2016
Lukas Cavigelli
Dominic Bernath
Michele Magno
Luca Benini
ArXiv (abs)PDFHTML

Papers citing "Computationally Efficient Target Classification in Multispectral Image Data with Deep Neural Networks"

5 / 5 papers shown
Title
On-chip Hyperspectral Image Segmentation with Fully Convolutional
  Networks for Scene Understanding in Autonomous Driving
On-chip Hyperspectral Image Segmentation with Fully Convolutional Networks for Scene Understanding in Autonomous Driving
Jon Gutiérrez-Zaballa
Koldo Basterretxea
Javier Echanobe
M. Victoria Martínez
Unai Martínez-Corral
Óscar Mata-Carballeira
Inés del Campo
164
27
0
28 Nov 2024
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference
  and Training Accelerators
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators
Lukas Cavigelli
Georg Rutishauser
Luca Benini
MQ
106
38
0
30 Aug 2019
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional
  Network Inference on Video Streams
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Network Inference on Video Streams
Lukas Cavigelli
Luca Benini
112
27
0
15 Aug 2018
Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN
  Inference Engine
Hyperdrive: A Multi-Chip Systolically Scalable Binary-Weight CNN Inference Engine
Renzo Andri
Lukas Cavigelli
D. Rossi
Luca Benini
MQ
106
19
0
05 Mar 2018
CBinfer: Change-Based Inference for Convolutional Neural Networks on
  Video Data
CBinfer: Change-Based Inference for Convolutional Neural Networks on Video Data
Lukas Cavigelli
Philippe Degen
Luca Benini
BDL
114
52
0
14 Apr 2017
1