ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.07873
  4. Cited By
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo

Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo

23 November 2016
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
ArXiv (abs)PDFHTML

Papers citing "Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo"

50 / 68 papers shown
Title
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Numerical Generalized Randomized Hamiltonian Monte Carlo for piecewise smooth target densities
Jimmy Huy Tran
T. S. Kleppe
BDL
69
0
0
25 Apr 2025
Fused $L_{1/2}$ prior for large scale linear inverse problem with Gibbs
  bouncy particle sampler
Fused L1/2L_{1/2}L1/2​ prior for large scale linear inverse problem with Gibbs bouncy particle sampler
Xiongwen Ke
Yanan Fan
Qingping Zhou
49
0
0
12 Sep 2024
Piecewise deterministic generative models
Piecewise deterministic generative models
Andrea Bertazzi
Alain Durmus
Dario Shariatian
Umut Simsekli
Éric Moulines
DiffM
58
1
0
28 Jul 2024
Stochastic Gradient Piecewise Deterministic Monte Carlo Samplers
Stochastic Gradient Piecewise Deterministic Monte Carlo Samplers
Paul Fearnhead
Sebastiano Grazzi
Chris Nemeth
Gareth O. Roberts
75
0
0
27 Jun 2024
Hoeffding's inequality for continuous-time Markov chains
Hoeffding's inequality for continuous-time Markov chains
Jinpeng Liu
Yuanyuan Liu
Lin Zhou
50
0
0
23 Apr 2024
Tuning diagonal scale matrices for HMC
Tuning diagonal scale matrices for HMC
Jimmy Huy Tran
T. S. Kleppe
70
4
0
12 Mar 2024
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Graph-accelerated Markov Chain Monte Carlo using Approximate Samples
Leo L. Duan
Anirban Bhattacharya
98
1
0
25 Jan 2024
Numerical Generalized Randomized HMC processes for restricted domains
Numerical Generalized Randomized HMC processes for restricted domains
T. S. Kleppe
R. Liesenfeld
41
2
0
24 Nov 2023
Causal structure learning with momentum: Sampling distributions over
  Markov Equivalence Classes of DAGs
Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
Moritz Schauer
Marcel Wienöbst
CML
90
2
0
09 Oct 2023
Debiasing Piecewise Deterministic Markov Process samplers using
  couplings
Debiasing Piecewise Deterministic Markov Process samplers using couplings
Adrien Corenflos
Matthew Sutton
Nicolas Chopin
54
1
0
27 Jun 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
67
0
0
17 Feb 2023
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
69
0
0
18 Dec 2022
Log-density gradient covariance and automatic metric tensors for Riemann
  manifold Monte Carlo methods
Log-density gradient covariance and automatic metric tensors for Riemann manifold Monte Carlo methods
T. S. Kleppe
74
3
0
03 Nov 2022
On free energy barriers in Gaussian priors and failure of cold start
  MCMC for high-dimensional unimodal distributions
On free energy barriers in Gaussian priors and failure of cold start MCMC for high-dimensional unimodal distributions
Afonso S. Bandeira
Antoine Maillard
Richard Nickl
Sven Wang
83
10
0
05 Sep 2022
Sampling algorithms in statistical physics: a guide for statistics and
  machine learning
Sampling algorithms in statistical physics: a guide for statistics and machine learning
Michael F Faulkner
Samuel Livingstone
57
7
0
09 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
100
16
0
01 Aug 2022
Automatic Zig-Zag sampling in practice
Automatic Zig-Zag sampling in practice
Alice Corbella
S. Spencer
Gareth O. Roberts
67
20
0
22 Jun 2022
Stereographic Markov Chain Monte Carlo
Stereographic Markov Chain Monte Carlo
Jun Yang
K. Latuszyñski
Gareth O. Roberts
82
14
0
24 May 2022
Continuously-Tempered PDMP Samplers
Continuously-Tempered PDMP Samplers
Matthew Sutton
R. Salomone
Augustin Chevallier
Paul Fearnhead
58
1
0
19 May 2022
Efficient computation of the volume of a polytope in high-dimensions
  using Piecewise Deterministic Markov Processes
Efficient computation of the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Augustin Chevallier
F. Cazals
Paul Fearnhead
46
13
0
18 Feb 2022
Accelerating Bayesian inference of dependency between complex biological
  traits
Accelerating Bayesian inference of dependency between complex biological traits
Zhenyu Zhang
A. Nishimura
Nídia S. Trovão
Joshua L. Cherry
Andrew J Holbrook
Xiang Ji
P. Lemey
M. Suchard
41
2
0
18 Jan 2022
Optimal design of the Barker proposal and other locally-balanced
  Metropolis-Hastings algorithms
Optimal design of the Barker proposal and other locally-balanced Metropolis-Hastings algorithms
Jure Vogrinc
Samuel Livingstone
Giacomo Zanella
47
11
0
04 Jan 2022
Strong Invariance Principles for Ergodic Markov Processes
Strong Invariance Principles for Ergodic Markov Processes
A. Pengel
J. Bierkens
39
1
0
24 Nov 2021
The Application of Zig-Zag Sampler in Sequential Markov Chain Monte
  Carlo
The Application of Zig-Zag Sampler in Sequential Markov Chain Monte Carlo
Yu Han
Kazuyuki Nakamura
50
2
0
18 Nov 2021
PDMP Monte Carlo methods for piecewise-smooth densities
PDMP Monte Carlo methods for piecewise-smooth densities
Augustin Chevallier
Samuel Power
Andi Q. Wang
Paul Fearnhead
56
11
0
10 Nov 2021
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
Non-reversible processes: GENERIC, Hypocoercivity and fluctuations
M. H. Duong
M. Ottobre
43
7
0
30 Oct 2021
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Asynchronous and Distributed Data Augmentation for Massive Data Settings
Jiayuan Zhou
Kshitij Khare
Sanvesh Srivastava
63
3
0
18 Sep 2021
A Note on the Polynomial Ergodicity of the One-Dimensional Zig-Zag
  process
A Note on the Polynomial Ergodicity of the One-Dimensional Zig-Zag process
G. Vasdekis
Gareth O. Roberts
74
6
0
21 Jun 2021
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Divide-and-Conquer Bayesian Inference in Hidden Markov Models
Chunlei Wang
Sanvesh Srivastava
61
9
0
30 May 2021
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Quan Zhou
Jun Yang
Dootika Vats
Gareth O. Roberts
Jeffrey S. Rosenthal
59
26
0
12 May 2021
Speed Up Zig-Zag
Speed Up Zig-Zag
G. Vasdekis
Gareth O. Roberts
52
11
0
30 Mar 2021
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Adaptive schemes for piecewise deterministic Monte Carlo algorithms
Andrea Bertazzi
J. Bierkens
46
10
0
27 Dec 2020
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly
  imbalanced binary and categorical data
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical data
Gregor Zens
Sylvia Fruhwirth-Schnatter
Helga Wagner
SyDa
108
13
0
13 Nov 2020
No Free Lunch for Approximate MCMC
No Free Lunch for Approximate MCMC
J. Johndrow
Natesh S. Pillai
Aaron Smith
104
18
0
23 Oct 2020
Reversible Jump PDMP Samplers for Variable Selection
Reversible Jump PDMP Samplers for Variable Selection
Augustin Chevallier
Paul Fearnhead
Matthew Sutton
65
18
0
22 Oct 2020
On explicit $L^2$-convergence rate estimate for piecewise deterministic
  Markov processes in MCMC algorithms
On explicit L2L^2L2-convergence rate estimate for piecewise deterministic Markov processes in MCMC algorithms
Jianfeng Lu
Lihan Wang
76
27
0
29 Jul 2020
The Boomerang Sampler
The Boomerang Sampler
J. Bierkens
Sebastiano Grazzi
K. Kamatani
Gareth O. Roberts
47
32
0
24 Jun 2020
Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with
  State-Dependent Event Rates
Connecting the Dots: Numerical Randomized Hamiltonian Monte Carlo with State-Dependent Event Rates
T. S. Kleppe
54
12
0
04 May 2020
Zig-zag sampling for discrete structures and non-reversible phylogenetic
  MCMC
Zig-zag sampling for discrete structures and non-reversible phylogenetic MCMC
Jere Koskela
60
7
0
19 Apr 2020
Analysis of Stochastic Gradient Descent in Continuous Time
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
81
41
0
15 Apr 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
95
17
0
14 Apr 2020
Posterior computation with the Gibbs zig-zag sampler
Posterior computation with the Gibbs zig-zag sampler
Matthias Sachs
Deborshee Sen
Jianfeng Lu
David B. Dunson
89
7
0
08 Apr 2020
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian
  Processes on Partitioned Domains
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
M. Peruzzi
Sudipto Banerjee
Andrew O. Finley
74
55
0
25 Mar 2020
A piecewise deterministic Monte Carlo method for diffusion bridges
A piecewise deterministic Monte Carlo method for diffusion bridges
J. Bierkens
Sebastiano Grazzi
Frank van der Meulen
Moritz Schauer
DiffM
83
22
0
16 Jan 2020
Large deviations for the empirical measure of the zig-zag process
Large deviations for the empirical measure of the zig-zag process
J. Bierkens
Pierre Nyquist
Mikola C. Schlottke
24
10
0
13 Dec 2019
Parallelising MCMC via Random Forests
Parallelising MCMC via Random Forests
Changye Wu
Christian P. Robert
18
5
0
21 Nov 2019
Cores for Piecewise-Deterministic Markov Processes used in Markov Chain
  Monte Carlo
Cores for Piecewise-Deterministic Markov Processes used in Markov Chain Monte Carlo
P. Holderrieth
93
10
0
20 Oct 2019
Collective Proposal Distributions for Nonlinear MCMC samplers:
  Mean-Field Theory and Fast Implementation
Collective Proposal Distributions for Nonlinear MCMC samplers: Mean-Field Theory and Fast Implementation
Grégoire Clarté
A. Diez
Jean Feydy
71
8
0
18 Sep 2019
The Barker proposal: combining robustness and efficiency in
  gradient-based MCMC
The Barker proposal: combining robustness and efficiency in gradient-based MCMC
Samuel Livingstone
Giacomo Zanella
88
50
0
30 Aug 2019
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo
  algorithm
Hug and Hop: a discrete-time, non-reversible Markov chain Monte-Carlo algorithm
Matthew Ludkin
Chris Sherlock
54
8
0
29 Jul 2019
12
Next