Papers
Communities
Events
Blog
Pricing
Search
Open menu
All Papers
Title
Home
Papers
1611.08097
Cited By
Geometric deep learning: going beyond Euclidean data
24 November 2016
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
Papers citing
"Geometric deep learning: going beyond Euclidean data"
4 / 4 papers shown
Title
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
OCL
33
425
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
OCL
GNN
PINN
41
1320
0
01 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
65
1728
0
25 Nov 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
31
1134
0
30 Nov 2014
1