Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.09913
Cited By
Capacity and Trainability in Recurrent Neural Networks
29 November 2016
Jasmine Collins
Jascha Narain Sohl-Dickstein
David Sussillo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Capacity and Trainability in Recurrent Neural Networks"
21 / 21 papers shown
Title
The impact of allocation strategies in subset learning on the expressive power of neural networks
Ofir Schlisselberg
Ran Darshan
91
0
0
10 Feb 2025
Exploring RWKV for Memory Efficient and Low Latency Streaming ASR
Keyu An
Shiliang Zhang
18
4
0
26 Sep 2023
Trainability, Expressivity and Interpretability in Gated Neural ODEs
T. Kim
T. Can
K. Krishnamurthy
AI4CE
32
4
0
12 Jul 2023
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
29
72
0
08 Dec 2022
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
16
173
0
07 Dec 2022
TeKo: Text-Rich Graph Neural Networks with External Knowledge
Zhizhi Yu
Di Jin
Jianguo Wei
Ziyang Liu
Yue Shang
Yun Xiao
Jiawei Han
Lingfei Wu
19
4
0
15 Jun 2022
Training neural networks using Metropolis Monte Carlo and an adaptive variant
S. Whitelam
V. Selin
Ian Benlolo
Corneel Casert
Isaac Tamblyn
BDL
11
7
0
16 May 2022
Intelligent Acoustic Module for Autonomous Vehicles using Fast Gated Recurrent approach
Raghav Rawat
Shreyash Gupta
Shreyas Mohapatra
S. P. Mishra
Sreesankar Rajagopal
25
2
0
06 Dec 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
92
0
10 Nov 2021
Understanding How Encoder-Decoder Architectures Attend
Kyle Aitken
V. Ramasesh
Yuan Cao
Niru Maheswaranathan
18
17
0
28 Oct 2021
Is it enough to optimize CNN architectures on ImageNet?
Lukas Tuggener
Jürgen Schmidhuber
Thilo Stadelmann
22
23
0
16 Mar 2021
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
48
669
0
06 Nov 2020
Unfolding recurrence by Green's functions for optimized reservoir computing
Sandra Nestler
Christian Keup
David Dahmen
M. Gilson
Holger Rauhut
M. Helias
6
4
0
13 Oct 2020
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
14
22
0
17 Apr 2020
Actor-Transformers for Group Activity Recognition
Kirill Gavrilyuk
Ryan Sanford
Mehrsan Javan
Cees G. M. Snoek
ViT
19
178
0
28 Mar 2020
Capacity, Bandwidth, and Compositionality in Emergent Language Learning
Cinjon Resnick
Abhinav Gupta
Jakob N. Foerster
Andrew M. Dai
Kyunghyun Cho
18
51
0
24 Oct 2019
Deep Temporal Analysis for Non-Acted Body Affect Recognition
D. Avola
Luigi Cinque
Alessio Fagioli
G. Foresti
Cristiano Massaroni
CVBM
28
27
0
23 Jul 2019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
13
77
0
25 Jun 2019
On Network Design Spaces for Visual Recognition
Ilija Radosavovic
Justin Johnson
Saining Xie
Wan-Yen Lo
Piotr Dollár
9
134
0
30 May 2019
An Optimized Recurrent Unit for Ultra-Low-Power Keyword Spotting
Justice Amoh
K. Odame
24
17
0
13 Feb 2019
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
40
710
0
01 Dec 2017
1