Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.02803
Cited By
v1
v2
v3
v4
v5 (latest)
The Physical Systems Behind Optimization Algorithms
8 December 2016
Lin F. Yang
R. Arora
Vladimir Braverman
T. Zhao
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Physical Systems Behind Optimization Algorithms"
8 / 8 papers shown
Title
Computing the Variance of Shuffling Stochastic Gradient Algorithms via Power Spectral Density Analysis
Carles Domingo-Enrich
35
0
0
01 Jun 2022
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
63
2
0
15 Aug 2020
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
Guodong Zhang
Lala Li
Zachary Nado
James Martens
Sushant Sachdeva
George E. Dahl
Christopher J. Shallue
Roger C. Grosse
118
154
0
09 Jul 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
92
30
0
02 Jul 2019
Meta-learners' learning dynamics are unlike learners'
Neil C. Rabinowitz
OffRL
88
16
0
03 May 2019
Conformal Symplectic and Relativistic Optimization
G. Francca
Jeremias Sulam
Daniel P. Robinson
René Vidal
85
69
0
11 Mar 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
73
102
0
05 Mar 2019
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
116
32
0
05 Oct 2018
1