ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.01329
  4. Cited By
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent
  Neural Networks

Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks

5 January 2017
Marwin H. S. Segler
T. Kogej
C. Tyrchan
M. Waller
ArXivPDFHTML

Papers citing "Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks"

17 / 17 papers shown
Title
RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets
RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets
Piotr Gaiñski
Michał Koziarski
Krzysztof Maziarz
Marwin H. S. Segler
Jacek Tabor
Marek Śmieja
52
3
0
26 Jun 2024
Faster and more diverse de novo molecular optimization with double-loop
  reinforcement learning using augmented SMILES
Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES
E. Bjerrum
Christian Margreitter
Thomas Blaschke
Raquel Lopez-Rios de Castro
32
11
0
22 Oct 2022
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
24
306
0
08 Jun 2021
Generating 3D Molecular Structures Conditional on a Receptor Binding
  Site with Deep Generative Models
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models
Tomohide Masuda
Matthew Ragoza
D. Koes
DiffM
31
52
0
16 Oct 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
Synthetic Data for Deep Learning
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
41
831
0
24 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative
  Model
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
35
335
0
18 Jan 2018
Using Rule-Based Labels for Weak Supervised Learning: A ChemNet for
  Transferable Chemical Property Prediction
Using Rule-Based Labels for Weak Supervised Learning: A ChemNet for Transferable Chemical Property Prediction
Garrett B. Goh
Charles Siegel
Abhinav Vishnu
Nathan Oken Hodas
18
90
0
07 Dec 2017
Deep Reinforcement Learning for De-Novo Drug Design
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
16
1,002
0
29 Nov 2017
Learning to Plan Chemical Syntheses
Learning to Plan Chemical Syntheses
Marwin H. S. Segler
Mike Preuss
M. Waller
30
1,356
0
14 Aug 2017
Retrosynthetic reaction prediction using neural sequence-to-sequence
  models
Retrosynthetic reaction prediction using neural sequence-to-sequence models
Bowen Liu
Bharath Ramsundar
Prasad Kawthekar
Jade Shi
Joseph Gomes
Quang Luu Nguyen
Stephen Ho
Jack L. Sloane
P. Wender
Vijay S. Pande
20
411
0
06 Jun 2017
DeepCCI: End-to-end Deep Learning for Chemical-Chemical Interaction
  Prediction
DeepCCI: End-to-end Deep Learning for Chemical-Chemical Interaction Prediction
Sunyoung Kwon
Sungroh Yoon
19
52
0
27 Apr 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
O. Engkvist
Hongming Chen
BDL
8
993
0
25 Apr 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
26
2,885
0
07 Oct 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,547
0
25 Jan 2016
1