ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.09055
  4. Cited By
A Gaussian Process Regression Model for Distribution Inputs
v1v2 (latest)

A Gaussian Process Regression Model for Distribution Inputs

31 January 2017
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
ArXiv (abs)PDFHTML

Papers citing "A Gaussian Process Regression Model for Distribution Inputs"

26 / 26 papers shown
Title
Distributional encoding for Gaussian process regression with qualitative inputs
Sébastien Da Veiga
UQCV
95
0
0
05 Jun 2025
Improved learning theory for kernel distribution regression with two-stage sampling
Improved learning theory for kernel distribution regression with two-stage sampling
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
145
2
0
28 Jan 2025
Adaptive Residual Transformation for Enhanced Feature-Based OOD
  Detection in SAR Imagery
Adaptive Residual Transformation for Enhanced Feature-Based OOD Detection in SAR Imagery
Kyung-Hwan Lee
Kyung-Tae Kim
77
0
0
01 Nov 2024
Learning to Embed Distributions via Maximum Kernel Entropy
Learning to Embed Distributions via Maximum Kernel Entropy
Oleksii Kachaiev
Stefano Recanatesi
OOD
120
0
0
01 Aug 2024
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
François Bachoc
70
1
0
26 Apr 2024
Gaussian Process regression over discrete probability measures: on the
  non-stationarity relation between Euclidean and Wasserstein Squared
  Exponential Kernels
Gaussian Process regression over discrete probability measures: on the non-stationarity relation between Euclidean and Wasserstein Squared Exponential Kernels
Antonio Candelieri
Andrea Ponti
Francesco Archetti
88
1
0
02 Dec 2022
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GPOT
66
8
0
12 Oct 2022
Computationally-efficient initialisation of GPs: The generalised
  variogram method
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
47
0
0
11 Oct 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
100
0
0
27 Jun 2022
Multivariate Gaussian Random Fields over Generalized Product Spaces
  involving the Hypertorus
Multivariate Gaussian Random Fields over Generalized Product Spaces involving the Hypertorus
François Bachoc
A. Peron
Emilio Porcu
36
3
0
22 Feb 2022
Distribution Regression with Sliced Wasserstein Kernels
Distribution Regression with Sliced Wasserstein Kernels
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
61
17
0
08 Feb 2022
Learning System Parameters from Turing Patterns
Learning System Parameters from Turing Patterns
David Schnörr
Christoph Schnörr
13
11
0
19 Aug 2021
Marginalising over Stationary Kernels with Bayesian Quadrature
Marginalising over Stationary Kernels with Bayesian Quadrature
Saad Hamid
Sebastian Schulze
Michael A. Osborne
Stephen J. Roberts
GP
55
4
0
14 Jun 2021
Central Limit Theorems for General Transportation Costs
Central Limit Theorems for General Transportation Costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
OT
62
28
0
12 Feb 2021
Kernel-based ANOVA decomposition and Shapley effects -- Application to
  global sensitivity analysis
Kernel-based ANOVA decomposition and Shapley effects -- Application to global sensitivity analysis
Sébastien Da Veiga
FAtt
72
26
0
14 Jan 2021
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
74
5
0
28 Oct 2020
The statistical effect of entropic regularization in optimal
  transportation
The statistical effect of entropic regularization in optimal transportation
E. del Barrio
Jean-Michel Loubes
OT
78
22
0
09 Jun 2020
Asymptotic properties of the maximum likelihood and cross validation
  estimators for transformed Gaussian processes
Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes
François Bachoc
José Bétancourt
Reinhard Furrer
T. Klein
45
12
0
25 Nov 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDLUQCV
44
8
0
13 Oct 2019
Dataset2Vec: Learning Dataset Meta-Features
Dataset2Vec: Learning Dataset Meta-Features
H. Jomaa
Lars Schmidt-Thieme
Josif Grabocka
SSL
86
64
0
27 May 2019
Aggregated kernel based tests for signal detection in a regression model
Aggregated kernel based tests for signal detection in a regression model
T. T. T. Bui
16
0
0
05 Apr 2019
Explaining Machine Learning Models using Entropic Variable Projection
Explaining Machine Learning Models using Entropic Variable Projection
François Bachoc
Fabrice Gamboa
Max Halford
Jean-Michel Loubes
Laurent Risser
FAtt
63
5
0
18 Oct 2018
Improving Temporal Interpolation of Head and Body Pose using Gaussian
  Process Regression in a Matrix Completion Setting
Improving Temporal Interpolation of Head and Body Pose using Gaussian Process Regression in a Matrix Completion Setting
Stephanie Tan
Hayley Hung
43
4
0
06 Aug 2018
Domain2Vec: Deep Domain Generalization
Domain2Vec: Deep Domain Generalization
A. Deshmukh
Ankit Bansal
Akash Rastogi
ViTOOD
53
5
0
09 Jul 2018
Distribution regression model with a Reproducing Kernel Hilbert Space
  approach
Distribution regression model with a Reproducing Kernel Hilbert Space approach
T. T. T. Bui
Jean-Michel Loubes
Risser
Balaresque
48
11
0
27 Jun 2018
Gaussian Processes indexed on the symmetric group: prediction and
  learning
Gaussian Processes indexed on the symmetric group: prediction and learning
François Bachoc
Baptiste Broto
Fabrice Gamboa
Jean-Michel Loubes
38
0
0
16 Mar 2018
1