ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.09180
  4. Cited By
Deep Stochastic Radar Models

Deep Stochastic Radar Models

31 January 2017
T. Wheeler
M. Holder
H. Winner
Mykel Kochenderfer
ArXivPDFHTML

Papers citing "Deep Stochastic Radar Models"

8 / 8 papers shown
Title
Reducing the Sensitivity of Neural Physics Simulators to Mesh Topology via Pretraining
Reducing the Sensitivity of Neural Physics Simulators to Mesh Topology via Pretraining
Nathan Vaska
Justin Goodwin
Robin Walters
Rajmonda S. Caceres
AAML
AI4CE
60
0
0
17 Jan 2025
RadaRays: Real-time Simulation of Rotating FMCW Radar for Mobile Robotics via Hardware-accelerated Ray Tracing
RadaRays: Real-time Simulation of Rotating FMCW Radar for Mobile Robotics via Hardware-accelerated Ray Tracing
Alexander Mock
Martin Magnusson
Joachim Hertzberg
43
1
0
05 Oct 2023
Radar-Camera Fusion for Object Detection and Semantic Segmentation in
  Autonomous Driving: A Comprehensive Review
Radar-Camera Fusion for Object Detection and Semantic Segmentation in Autonomous Driving: A Comprehensive Review
Shanliang Yao
Runwei Guan
Xiaoyu Huang
Zhuoxiao Li
Xiangyu Sha
...
Eng Gee Lim
H. Seo
Ka Lok Man
Xiaohui Zhu
Yutao Yue
41
91
0
20 Apr 2023
Sensor Visibility Estimation: Metrics and Methods for Systematic
  Performance Evaluation and Improvement
Sensor Visibility Estimation: Metrics and Methods for Systematic Performance Evaluation and Improvement
J. Börger
M. P. Zapf
Marat Kopytjuk
Xinrun Li
Claudius Gläser
9
2
0
11 Nov 2022
There and Back Again: Learning to Simulate Radar Data for Real-World
  Applications
There and Back Again: Learning to Simulate Radar Data for Real-World Applications
Rob Weston
Oiwi Parker Jones
Ingmar Posner
23
18
0
29 Nov 2020
Autonomous Driving with Deep Learning: A Survey of State-of-Art
  Technologies
Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies
Yu Huang
Yue Chen
3DPC
49
83
0
10 Jun 2020
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
41
987
0
21 Feb 2019
Tracking Multiple Vehicles Using a Variational Radar Model
Tracking Multiple Vehicles Using a Variational Radar Model
A. Scheel
Klaus C. J. Dietmayer
27
59
0
10 Nov 2017
1