Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.07254
Cited By
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
23 February 2017
Simon Fischer
Ingo Steinwart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm"
50 / 105 papers shown
Title
Sharp Spectral Rates for Koopman Operator Learning
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
43
20
0
03 Feb 2023
Bandit Convex Optimisation Revisited: FTRL Achieves
O
~
(
t
1
/
2
)
\tilde{O}(t^{1/2})
O
~
(
t
1/2
)
Regret
David Young
D. Leith
Georgios Iosifidis
21
0
0
01 Feb 2023
Continuous Spatiotemporal Transformers
Antonio H. O. Fonseca
E. Zappala
J. O. Caro
David van Dijk
26
7
0
31 Jan 2023
Efficient Conditionally Invariant Representation Learning
Roman Pogodin
Namrata Deka
Yazhe Li
Danica J. Sutherland
Victor Veitch
Arthur Gretton
BDL
OOD
CML
41
16
0
16 Dec 2022
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
33
9
0
20 Nov 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
31
12
0
28 Sep 2022
Nonparametric augmented probability weighting with sparsity
Xin He
Xiaojun Mao
Zhonglei Wang
28
0
0
28 Sep 2022
Quantitative limit theorems and bootstrap approximations for empirical spectral projectors
M. Jirak
Martin Wahl
8
4
0
26 Aug 2022
Improved Rates of Bootstrap Approximation for the Operator Norm: A Coordinate-Free Approach
Miles E. Lopes
29
3
0
05 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
35
47
0
02 Aug 2022
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
29
3
0
22 May 2022
A Case of Exponential Convergence Rates for SVM
Vivien A. Cabannes
Stefano Vigogna
24
2
0
20 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
38
7
0
15 May 2022
Optimal Learning Rates for Regularized Least-Squares with a Fourier Capacity Condition
Prem M. Talwai
D. Simchi-Levi
13
2
0
16 Apr 2022
Dimensionality Reduction and Wasserstein Stability for Kernel Regression
Stephan Eckstein
Armin Iske
Mathias Trabs
24
4
0
17 Mar 2022
Failure and success of the spectral bias prediction for Kernel Ridge Regression: the case of low-dimensional data
Umberto M. Tomasini
Antonio Sclocchi
M. Wyart
20
12
0
07 Feb 2022
The Three Stages of Learning Dynamics in High-Dimensional Kernel Methods
Nikhil Ghosh
Song Mei
Bin Yu
33
20
0
13 Nov 2021
Nyström Regularization for Time Series Forecasting
Zirui Sun
Mingwei Dai
Yao Wang
Shao-Bo Lin
AI4TS
25
2
0
13 Nov 2021
Generalized Kernel Ridge Regression for Causal Inference with Missing-at-Random Sample Selection
Rahul Singh
28
1
0
09 Nov 2021
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
32
3
0
06 Nov 2021
An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings
M. Scetbon
Laurent Meunier
Yaniv Romano
28
10
0
28 Oct 2021
Learning curves for Gaussian process regression with power-law priors and targets
Hui Jin
P. Banerjee
Guido Montúfar
14
17
0
23 Oct 2021
Quasi-Bayesian Dual Instrumental Variable Regression
Ziyun Wang
Yuhao Zhou
Tongzheng Ren
Jun Zhu
24
2
0
16 Jun 2021
On the Sample Complexity of Learning under Invariance and Geometric Stability
A. Bietti
Luca Venturi
Joan Bruna
30
5
0
14 Jun 2021
The Inductive Bias of Quantum Kernels
Jonas M. Kubler
Simon Buchholz
Bernhard Schölkopf
19
119
0
07 Jun 2021
Learning Curves for SGD on Structured Features
Blake Bordelon
Cengiz Pehlevan
MLT
25
0
0
04 Jun 2021
Generalization Error Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
40
82
0
31 May 2021
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Prem M. Talwai
A. Shameli
D. Simchi-Levi
31
10
0
16 May 2021
Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
Wei Cao
Bing-Yi Jing
15
6
0
20 Apr 2021
Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension
Rahul Singh
CML
22
8
0
22 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Online nonparametric regression with Sobolev kernels
O. Zadorozhnyi
Pierre Gaillard
Sébastien Gerchinovitz
Alessandro Rudi
18
3
0
06 Feb 2021
Fast rates in structured prediction
Vivien A. Cabannes
Alessandro Rudi
Francis R. Bach
20
19
0
01 Feb 2021
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
38
5
0
21 Dec 2020
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Rahul Singh
CML
39
39
0
18 Dec 2020
Stochastic Gradient Descent Meets Distribution Regression
Nicole Mücke
36
5
0
24 Oct 2020
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
OffRL
68
27
0
10 Oct 2020
Kernel regression in high dimensions: Refined analysis beyond double descent
Fanghui Liu
Zhenyu Liao
Johan A. K. Suykens
11
50
0
06 Oct 2020
Stochastic Gradient Descent in Hilbert Scales: Smoothness, Preconditioning and Earlier Stopping
Nicole Mücke
Enrico Reiss
6
7
0
18 Jun 2020
How isotropic kernels perform on simple invariants
J. Paccolat
S. Spigler
M. Wyart
27
4
0
17 Jun 2020
Estimates on Learning Rates for Multi-Penalty Distribution Regression
Zhan Yu
D. Ho
6
0
0
16 Jun 2020
Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model
Raphael Berthier
Francis R. Bach
Pierre Gaillard
20
37
0
15 Jun 2020
Sample complexity and effective dimension for regression on manifolds
Andrew D. McRae
Justin Romberg
Mark A. Davenport
10
8
0
13 Jun 2020
On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
Zejian Liu
Meng Li
24
8
0
02 Jun 2020
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
Alain Celisse
Martin Wahl
13
18
0
17 Apr 2020
A Spectral Analysis of Dot-product Kernels
M. Scetbon
Zaïd Harchaoui
209
2
0
28 Feb 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
13
55
0
29 Jan 2020
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
28
253
0
29 May 2019
Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration
Kwang-Sung Jun
Ashok Cutkosky
Francesco Orabona
21
20
0
25 May 2019
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance
Ulysse Marteau-Ferey
Dmitrii Ostrovskii
Francis R. Bach
Alessandro Rudi
32
52
0
08 Feb 2019
Previous
1
2
3
Next