Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.07464
Cited By
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
24 February 2017
B. Hitaj
G. Ateniese
F. Pérez-Cruz
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning"
50 / 160 papers shown
Title
Achieving Security and Privacy in Federated Learning Systems: Survey, Research Challenges and Future Directions
Alberto Blanco-Justicia
J. Domingo-Ferrer
Sergio Martínez
David Sánchez
Adrian Flanagan
K. E. Tan
FedML
18
110
0
12 Dec 2020
On Lightweight Privacy-Preserving Collaborative Learning for Internet of Things by Independent Random Projections
Linshan Jiang
Rui Tan
Xin Lou
Guosheng Lin
19
12
0
11 Dec 2020
This Face Does Not Exist ... But It Might Be Yours! Identity Leakage in Generative Models
Patrick J. Tinsley
A. Czajka
Patrick Flynn
CVBM
GAN
33
39
0
10 Dec 2020
Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
Jingwei Sun
Ang Li
Binghui Wang
Huanrui Yang
Hai Li
Yiran Chen
FedML
19
163
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Unleashing the Tiger: Inference Attacks on Split Learning
Dario Pasquini
G. Ateniese
M. Bernaschi
FedML
21
147
0
04 Dec 2020
Privacy-Preserving XGBoost Inference
Xianrui Meng
J. Feigenbaum
9
14
0
09 Nov 2020
Revolutionizing Medical Data Sharing Using Advanced Privacy Enhancing Technologies: Technical, Legal and Ethical Synthesis
J. Scheibner
J. Raisaro
J. Troncoso-Pastoriza
M. Ienca
J. Fellay
E. Vayena
Jean-Pierre Hubaux
15
75
0
27 Oct 2020
Amnesiac Machine Learning
Laura Graves
Vineel Nagisetty
Vijay Ganesh
MU
MIACV
16
245
0
21 Oct 2020
Feature Inference Attack on Model Predictions in Vertical Federated Learning
Xinjian Luo
Yuncheng Wu
Xiaokui Xiao
Beng Chin Ooi
FedML
AAML
11
218
0
20 Oct 2020
SAPAG: A Self-Adaptive Privacy Attack From Gradients
Yijue Wang
Jieren Deng
Danyi Guo
Chenghong Wang
Xianrui Meng
Hang Liu
Caiwen Ding
Sanguthevar Rajasekaran
4
35
0
14 Sep 2020
POSEIDON: Privacy-Preserving Federated Neural Network Learning
Sinem Sav
Apostolos Pyrgelis
J. Troncoso-Pastoriza
D. Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean-Pierre Hubaux
FedML
11
153
0
01 Sep 2020
NoPeek: Information leakage reduction to share activations in distributed deep learning
Praneeth Vepakomma
Abhishek Singh
O. Gupta
Ramesh Raskar
MIACV
FedML
16
84
0
20 Aug 2020
Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
Jihong Park
S. Samarakoon
Anis Elgabli
Joongheon Kim
M. Bennis
Seong-Lyun Kim
Mérouane Debbah
34
161
0
06 Aug 2020
More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence
Tianqing Zhu
Dayong Ye
Wei Wang
Wanlei Zhou
Philip S. Yu
SyDa
34
125
0
05 Aug 2020
Data Poisoning Attacks Against Federated Learning Systems
Vale Tolpegin
Stacey Truex
Mehmet Emre Gursoy
Ling Liu
FedML
23
638
0
16 Jul 2020
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
30
213
0
15 Jul 2020
Free-rider Attacks on Model Aggregation in Federated Learning
Yann Fraboni
Richard Vidal
Marco Lorenzi
FedML
6
124
0
21 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
14
18
0
14 Jun 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
19
94
0
08 Jun 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
25
83
0
18 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
73
25
0
27 Apr 2020
Local Differential Privacy based Federated Learning for Internet of Things
Yang Zhao
Jun Zhao
Mengmeng Yang
Teng Wang
Ning Wang
Lingjuan Lyu
Dusit Niyato
Kwok-Yan Lam
25
292
0
19 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
57
50
0
01 Apr 2020
Semi-Federated Learning
Zhikun Chen
Daofeng Li
Mingde Zhao
Sihai Zhang
Jinkang Zhu
FedML
8
18
0
28 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
358
0
24 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
16
269
0
07 Mar 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo-Wen Zhang
H. Vincent Poor
FedML
25
11
0
29 Feb 2020
Federated machine learning with Anonymous Random Hybridization (FeARH) on medical records
Jianfei Cui
He Zhu
Hao Deng
Ziwei Chen
Dianbo Liu
15
33
0
25 Dec 2019
Assessing differentially private deep learning with Membership Inference
Daniel Bernau
Philip-William Grassal
J. Robl
Florian Kerschbaum
MIACV
FedML
18
23
0
24 Dec 2019
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
19
33
0
17 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
11
172
0
22 Nov 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
22
53
0
21 Oct 2019
PPGAN: Privacy-preserving Generative Adversarial Network
Yi Liu
Jialiang Peng
James J. Q. Yu
Yi Wu
32
70
0
04 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
40
965
0
04 Oct 2019
Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis
Jing Ma
Qiuchen Zhang
Jian Lou
Joyce C. Ho
Li Xiong
Xiaoqian Jiang
27
44
0
26 Aug 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
13
30
0
30 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
35
2,278
0
04 Jul 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
11
2,156
0
21 Jun 2019
Robust or Private? Adversarial Training Makes Models More Vulnerable to Privacy Attacks
Felipe A. Mejia
Paul Gamble
Z. Hampel-Arias
M. Lomnitz
Nina Lopatina
Lucas Tindall
M. Barrios
SILM
19
18
0
15 Jun 2019
AutoGAN-based Dimension Reduction for Privacy Preservation
Hung Nguyen
Di Zhuang
Pei-Yuan Wu
Jerome Chang
14
33
0
27 Feb 2019
Adversarial Neural Network Inversion via Auxiliary Knowledge Alignment
Ziqi Yang
E. Chang
Zhenkai Liang
MLAU
17
60
0
22 Feb 2019
XONN: XNOR-based Oblivious Deep Neural Network Inference
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
FedML
GNN
BDL
17
280
0
19 Feb 2019
Secure Federated Transfer Learning
Yang Liu
Yan Kang
Chaoping Xing
Tianjian Chen
Qiang Yang
FedML
6
119
0
08 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
22
99
0
08 Dec 2018
Three Tools for Practical Differential Privacy
K. V. D. Veen
Ruben Seggers
Peter Bloem
Giorgio Patrini
11
39
0
07 Dec 2018
Differentially Private Data Generative Models
Qingrong Chen
Chong Xiang
Minhui Xue
Bo-wen Li
Nikita Borisov
Dali Kaafar
Haojin Zhu
SyDa
AAML
15
79
0
06 Dec 2018
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
AAML
13
243
0
03 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Zhibo Wang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
14
775
0
03 Dec 2018
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
24
98
0
10 Sep 2018
Previous
1
2
3
4
Next