ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08675
  4. Cited By
3D Shape Segmentation via Shape Fully Convolutional Networks

3D Shape Segmentation via Shape Fully Convolutional Networks

28 February 2017
Pengyu Wang
Y. Gan
Panpan Shui
Fenggen Yu
Yan Zhang
Song-Le Chen
Zhengxing Sun
    3DPC
ArXivPDFHTML

Papers citing "3D Shape Segmentation via Shape Fully Convolutional Networks"

10 / 10 papers shown
Title
Advancements in Point Cloud-Based 3D Defect Detection and Classification
  for Industrial Systems: A Comprehensive Survey
Advancements in Point Cloud-Based 3D Defect Detection and Classification for Industrial Systems: A Comprehensive Survey
Anju Rani
D. O. Arroyo
Petar Durdevic
3DPC
40
5
0
20 Feb 2024
Contrastive Boundary Learning for Point Cloud Segmentation
Contrastive Boundary Learning for Point Cloud Segmentation
Liyao Tang
Yibing Zhan
Zhe Chen
Baosheng Yu
Dacheng Tao
3DPC
38
103
0
10 Mar 2022
Scalable 3D Semantic Segmentation for Gun Detection in CT Scans
Scalable 3D Semantic Segmentation for Gun Detection in CT Scans
Marius Memmel
Christoph Reich
Nicolas Wagner
Faraz Saeedan
43
1
0
07 Dec 2021
HodgeNet: Learning Spectral Geometry on Triangle Meshes
HodgeNet: Learning Spectral Geometry on Triangle Meshes
Dmitriy Smirnov
Justin Solomon
38
25
0
26 Apr 2021
LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling
LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling
Yi-Ling Qiao
Lin Gao
Jie Yang
Paul L. Rosin
Yu-Kun Lai
Xilin Chen
3DV
3DPC
35
12
0
30 Oct 2019
PartNet: A Recursive Part Decomposition Network for Fine-grained and
  Hierarchical Shape Segmentation
PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation
Fenggen Yu
Kun Liu
Yan Zhang
Chenyang Zhu
Kai Xu
3DPC
3DV
31
94
0
02 Mar 2019
Occupancy Networks: Learning 3D Reconstruction in Function Space
Occupancy Networks: Learning 3D Reconstruction in Function Space
L. Mescheder
Michael Oechsle
Michael Niemeyer
Sebastian Nowozin
Andreas Geiger
3DV
117
2,864
0
10 Dec 2018
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
Yaoqing Yang
Chen Feng
Yiru Shen
Dong Tian
3DPC
40
76
0
19 Dec 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
263
1,812
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
264
3,246
0
24 Nov 2016
1