ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00956
  4. Cited By
A Laplacian Framework for Option Discovery in Reinforcement Learning

A Laplacian Framework for Option Discovery in Reinforcement Learning

2 March 2017
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
ArXivPDFHTML

Papers citing "A Laplacian Framework for Option Discovery in Reinforcement Learning"

7 / 57 papers shown
Title
Learning Representations in Model-Free Hierarchical Reinforcement
  Learning
Learning Representations in Model-Free Hierarchical Reinforcement Learning
J. Rafati
D. Noelle
24
45
0
23 Oct 2018
Finding Options that Minimize Planning Time
Finding Options that Minimize Planning Time
Yuu Jinnai
David Abel
D Ellis Hershkowitz
Michael Littman
George Konidaris
19
41
0
16 Oct 2018
Curiosity Driven Exploration of Learned Disentangled Goal Spaces
Curiosity Driven Exploration of Learned Disentangled Goal Spaces
A. Laversanne-Finot
Alexandre Péré
Pierre-Yves Oudeyer
DRL
27
87
0
04 Jul 2018
Computational Theories of Curiosity-Driven Learning
Computational Theories of Curiosity-Driven Learning
Pierre-Yves Oudeyer
32
64
0
28 Feb 2018
State Representation Learning for Control: An Overview
State Representation Learning for Control: An Overview
Timothée Lesort
Natalia Díaz Rodríguez
Jean-François Goudou
David Filliat
OffRL
45
319
0
12 Feb 2018
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
39
544
0
18 Sep 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
106
1,505
0
25 Jan 2017
Previous
12