Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00956
Cited By
A Laplacian Framework for Option Discovery in Reinforcement Learning
2 March 2017
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Laplacian Framework for Option Discovery in Reinforcement Learning"
50 / 57 papers shown
Title
NBDI: A Simple and Effective Termination Condition for Skill Extraction from Task-Agnostic Demonstrations
Myunsoo Kim
Hayeong Lee
Seong-Woong Shim
JunHo Seo
Byung-Jun Lee
LLMAG
41
0
0
22 Jan 2025
Subgoal Discovery Using a Free Energy Paradigm and State Aggregations
Amirhossein Mesbah
Reshad Hosseini
Seyed Pooya Shariatpanahi
M. N. Ahmadabadi
79
0
0
21 Dec 2024
Synthesizing Evolving Symbolic Representations for Autonomous Systems
Gabriele Sartor
A. Oddi
R. Rasconi
V. Santucci
Rosa Meo
26
0
0
18 Sep 2024
Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction
Anthony GX-Chen
Kenneth Marino
Rob Fergus
OCL
63
1
0
21 Aug 2024
When Do Skills Help Reinforcement Learning? A Theoretical Analysis of Temporal Abstractions
Zhening Li
Gabriel Poesia
Armando Solar-Lezama
OffRL
42
1
0
12 Jun 2024
Effective Reinforcement Learning Based on Structural Information Principles
Xianghua Zeng
Hao Peng
Dingli Su
Angsheng Li
45
0
0
15 Apr 2024
Memory, Space, and Planning: Multiscale Predictive Representations
Ida Momennejad
40
2
0
16 Jan 2024
Proper Laplacian Representation Learning
Diego Gomez
Michael Bowling
Marlos C. Machado
31
1
0
16 Oct 2023
METRA: Scalable Unsupervised RL with Metric-Aware Abstraction
Seohong Park
Oleh Rybkin
Sergey Levine
OffRL
38
34
0
13 Oct 2023
Dyadic Reinforcement Learning
Shuangning Li
L. Niell
S. Choi
Inbal Nahum-Shani
Guy Shani
Susan Murphy
OffRL
28
2
0
15 Aug 2023
Learning Environment Models with Continuous Stochastic Dynamics
Martin Tappler
Edi Muškardin
B. Aichernig
Bettina Könighofer
AI4CE
38
1
0
29 Jun 2023
A Cover Time Study of a non-Markovian Algorithm
Guanhua Fang
G. Samorodnitsky
Zhiqiang Xu
28
0
0
08 Jun 2023
Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition
Yash Chandak
S. Thakoor
Z. Guo
Yunhao Tang
Rémi Munos
Will Dabney
Diana Borsa
35
2
0
01 May 2023
A Review of Symbolic, Subsymbolic and Hybrid Methods for Sequential Decision Making
Carlos Núnez-Molina
Pablo Mesejo
Juan Fernández-Olivares
39
3
0
20 Apr 2023
Fast exploration and learning of latent graphs with aliased observations
Miguel Lazaro-Gredilla
Ishani Deshpande
Siva K. Swaminathan
Meet Dave
Dileep George
33
3
0
13 Mar 2023
Predictable MDP Abstraction for Unsupervised Model-Based RL
Seohong Park
Sergey Levine
29
9
0
08 Feb 2023
Deep Laplacian-based Options for Temporally-Extended Exploration
Martin Klissarov
Marlos C. Machado
OffRL
26
20
0
26 Jan 2023
On the Geometry of Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
Omer Gottesman
George Konidaris
29
0
0
29 Dec 2022
Reachability-Aware Laplacian Representation in Reinforcement Learning
Kaixin Wang
Kuangqi Zhou
Jiashi Feng
Bryan Hooi
Xinchao Wang
36
2
0
24 Oct 2022
Does Zero-Shot Reinforcement Learning Exist?
Ahmed Touati
Jérémy Rapin
Yann Ollivier
OffRL
42
39
0
29 Sep 2022
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
45
35
0
19 Sep 2022
MO2: Model-Based Offline Options
Sasha Salter
Markus Wulfmeier
Dhruva Tirumala
N. Heess
Martin Riedmiller
R. Hadsell
Dushyant Rao
OffRL
32
13
0
05 Sep 2022
Spectral Decomposition Representation for Reinforcement Learning
Tongzheng Ren
Tianjun Zhang
Lisa Lee
Joseph E. Gonzalez
Dale Schuurmans
Bo Dai
OffRL
40
27
0
19 Aug 2022
Learning Dynamics and Generalization in Reinforcement Learning
Clare Lyle
Mark Rowland
Will Dabney
Marta Z. Kwiatkowska
Y. Gal
OOD
OffRL
35
12
0
05 Jun 2022
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
31
324
0
02 May 2022
Safer Autonomous Driving in a Stochastic, Partially-Observable Environment by Hierarchical Contingency Planning
Ugo Lecerf
Christelle Yemdji Tchassi
Pietro Michiardi
30
1
0
13 Apr 2022
Automatically Learning Fallback Strategies with Model-Free Reinforcement Learning in Safety-Critical Driving Scenarios
Ugo Lecerf
Christelle Yemdji Tchassi
S. Aubert
Pietro Michiardi
26
0
0
11 Apr 2022
Unsupervised Learning of Temporal Abstractions with Slot-based Transformers
Anand Gopalakrishnan
Kazuki Irie
Jürgen Schmidhuber
Sjoerd van Steenkiste
OffRL
28
16
0
25 Mar 2022
Possibility Before Utility: Learning And Using Hierarchical Affordances
Robby Costales
Shariq Iqbal
Fei Sha
34
5
0
23 Mar 2022
A Survey on Recent Advances and Challenges in Reinforcement Learning Methods for Task-Oriented Dialogue Policy Learning
Wai-Chung Kwan
Hongru Wang
Huimin Wang
Kam-Fai Wong
OffRL
40
43
0
28 Feb 2022
Flexible Option Learning
Martin Klissarov
Doina Precup
OffRL
41
26
0
06 Dec 2021
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching
Pierre-Alexandre Kamienny
Jean Tarbouriech
Sylvain Lamprier
A. Lazaric
Ludovic Denoyer
SSL
45
18
0
27 Oct 2021
Hierarchical Skills for Efficient Exploration
Jonas Gehring
Gabriel Synnaeve
Andreas Krause
Nicolas Usunier
28
40
0
20 Oct 2021
Provable Hierarchy-Based Meta-Reinforcement Learning
Kurtland Chua
Qi Lei
Jason D. Lee
22
5
0
18 Oct 2021
DROP: Deep relocating option policy for optimal ride-hailing vehicle repositioning
Xinwu Qian
Shuocheng Guo
Vaneet Aggarwal
23
20
0
09 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
37
80
0
01 Sep 2021
Hierarchical Representation Learning for Markov Decision Processes
Lorenzo Steccanella
Simone Totaro
Anders Jonsson
28
4
0
03 Jun 2021
Discovery of Options via Meta-Learned Subgoals
Vivek Veeriah
Tom Zahavy
Matteo Hessel
Zhongwen Xu
Junhyuk Oh
Iurii Kemaev
H. V. Hasselt
David Silver
Satinder Singh
29
33
0
12 Feb 2021
LISPR: An Options Framework for Policy Reuse with Reinforcement Learning
D. Graves
Jun Jin
Jun Luo
38
2
0
29 Dec 2020
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
34
0
02 Jun 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
24
26
0
06 Apr 2020
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
29
100
0
23 Sep 2019
A Sufficient Statistic for Influence in Structured Multiagent Environments
F. Oliehoek
Stefan J. Witwicki
L. Kaelbling
23
23
0
22 Jul 2019
Reinforcement Learning with Competitive Ensembles of Information-Constrained Primitives
Anirudh Goyal
Shagun Sodhani
Jonathan Binas
Xue Bin Peng
Sergey Levine
Yoshua Bengio
24
47
0
25 Jun 2019
DAC: The Double Actor-Critic Architecture for Learning Options
Shangtong Zhang
Shimon Whiteson
30
72
0
29 Apr 2019
Discovering Options for Exploration by Minimizing Cover Time
Yuu Jinnai
Jee Won Park
David Abel
George Konidaris
30
52
0
02 Mar 2019
A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning
Francisco M. Garcia
Philip S. Thomas
24
38
0
03 Feb 2019
Natural Option Critic
Saket Tiwari
Philip S. Thomas
19
22
0
04 Dec 2018
Hyperbolic Embeddings for Learning Options in Hierarchical Reinforcement Learning
Saket Tiwari
M. Prannoy
19
2
0
04 Dec 2018
Unsupervised Control Through Non-Parametric Discriminative Rewards
David Warde-Farley
T. Wiele
Tejas D. Kulkarni
Catalin Ionescu
Steven Hansen
Volodymyr Mnih
DRL
OffRL
SSL
41
173
0
28 Nov 2018
1
2
Next