Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.02624
Cited By
Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms
7 March 2017
Jialei Wang
Lin Xiao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms"
5 / 5 papers shown
Title
Contractivity and linear convergence in bilinear saddle-point problems: An operator-theoretic approach
Colin Dirren
Mattia Bianchi
Panagiotis D. Grontas
John Lygeros
Florian Dorfler
41
0
0
18 Oct 2024
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
29
7
0
01 Feb 2022
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
23
35
0
19 Feb 2021
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
68
120
0
05 Feb 2018
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
1