ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.09039
  4. Cited By
Efficient Processing of Deep Neural Networks: A Tutorial and Survey

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

27 March 2017
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
    AAML
    3DV
ArXivPDFHTML

Papers citing "Efficient Processing of Deep Neural Networks: A Tutorial and Survey"

36 / 186 papers shown
Title
Energy-Efficient Processing and Robust Wireless Cooperative Transmission
  for Edge Inference
Energy-Efficient Processing and Robust Wireless Cooperative Transmission for Edge Inference
Kai Yang
Yuanming Shi
Wei Yu
Z. Ding
16
42
0
29 Jul 2019
Learning Multimodal Fixed-Point Weights using Gradient Descent
Learning Multimodal Fixed-Point Weights using Gradient Descent
Lukas Enderich
Fabian Timm
Lars Rosenbaum
Wolfram Burgard
MQ
17
9
0
16 Jul 2019
Parameterized Structured Pruning for Deep Neural Networks
Parameterized Structured Pruning for Deep Neural Networks
Günther Schindler
Wolfgang Roth
Franz Pernkopf
Holger Froening
16
6
0
12 Jun 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with
  Edge Computing
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
19
1,418
0
24 May 2019
NeuPart: Using Analytical Models to Drive Energy-Efficient Partitioning
  of CNN Computations on Cloud-Connected Mobile Clients
NeuPart: Using Analytical Models to Drive Energy-Efficient Partitioning of CNN Computations on Cloud-Connected Mobile Clients
Susmita Dey Manasi
F. S. Snigdha
S. Sapatnekar
18
16
0
09 May 2019
Progressive Stochastic Binarization of Deep Networks
Progressive Stochastic Binarization of Deep Networks
David Hartmann
Michael Wand
MQ
12
1
0
03 Apr 2019
Multi-vision Attention Networks for On-line Red Jujube Grading
Multi-vision Attention Networks for On-line Red Jujube Grading
Xiaoye Sun
Liyan Ma
Gongyang Li
9
9
0
31 Mar 2019
Automated Circuit Approximation Method Driven by Data Distribution
Automated Circuit Approximation Method Driven by Data Distribution
Z. Vašíček
Vojtěch Mrázek
Lukás Sekanina
7
17
0
11 Mar 2019
Efficient Winograd or Cook-Toom Convolution Kernel Implementation on
  Widely Used Mobile CPUs
Efficient Winograd or Cook-Toom Convolution Kernel Implementation on Widely Used Mobile CPUs
Partha P. Maji
Andrew Mundy
Ganesh S. Dasika
Jesse G. Beu
Matthew Mattina
Robert D. Mullins
16
26
0
04 Mar 2019
Single-shot Channel Pruning Based on Alternating Direction Method of
  Multipliers
Single-shot Channel Pruning Based on Alternating Direction Method of Multipliers
Chengcheng Li
Z. Wang
Xiangyang Wang
Hairong Qi
11
5
0
18 Feb 2019
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Optimally Scheduling CNN Convolutions for Efficient Memory Access
Arthur Stoutchinin
Francesco Conti
Luca Benini
19
43
0
04 Feb 2019
Trading-off Accuracy and Energy of Deep Inference on Embedded Systems: A
  Co-Design Approach
Trading-off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach
Nitthilan Kanappan Jayakodi
Anwesha Chatterjee
Wonje Choi
J. Doppa
P. Pande
11
27
0
29 Jan 2019
Bayesian State Estimation for Unobservable Distribution Systems via Deep
  Learning
Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning
Kursat Rasim Mestav
Jaime Luengo-Rozas
L. Tong
BDL
20
133
0
07 Nov 2018
NestDNN: Resource-Aware Multi-Tenant On-Device Deep Learning for
  Continuous Mobile Vision
NestDNN: Resource-Aware Multi-Tenant On-Device Deep Learning for Continuous Mobile Vision
Biyi Fang
Xiao Zeng
Mi Zhang
3DH
12
263
0
23 Oct 2018
MBS: Macroblock Scaling for CNN Model Reduction
MBS: Macroblock Scaling for CNN Model Reduction
Yu-Hsun Lin
Chun-Nan Chou
Edward Y. Chang
MQ
11
4
0
18 Sep 2018
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Normalization in Training U-Net for 2D Biomedical Semantic Segmentation
Xiao-Yun Zhou
Guang-Zhong Yang
11
77
0
11 Sep 2018
DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human
  Activity Recognition
DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human Activity Recognition
Zhan Yang
Osolo Ian Raymond
Chengyuan Zhang
Ying Wan
J. Long
CVBM
23
36
0
31 Jul 2018
2P-DNN : Privacy-Preserving Deep Neural Networks Based on Homomorphic
  Cryptosystem
2P-DNN : Privacy-Preserving Deep Neural Networks Based on Homomorphic Cryptosystem
Qiang Zhu
Xixiang Lv
11
16
0
23 Jul 2018
FINN-L: Library Extensions and Design Trade-off Analysis for Variable
  Precision LSTM Networks on FPGAs
FINN-L: Library Extensions and Design Trade-off Analysis for Variable Precision LSTM Networks on FPGAs
Vladimir Rybalkin
Alessandro Pappalardo
M. M. Ghaffar
Giulio Gambardella
Norbert Wehn
Michaela Blott
11
72
0
11 Jul 2018
Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on
  Mobile Devices
Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices
Yu-hsin Chen
Tien-Ju Yang
J. Emer
Vivienne Sze
MQ
11
70
0
10 Jul 2018
Quantizing deep convolutional networks for efficient inference: A
  whitepaper
Quantizing deep convolutional networks for efficient inference: A whitepaper
Raghuraman Krishnamoorthi
MQ
14
990
0
21 Jun 2018
On the Resilience of RTL NN Accelerators: Fault Characterization and
  Mitigation
On the Resilience of RTL NN Accelerators: Fault Characterization and Mitigation
Behzad Salami
O. Unsal
A. Cristal
15
66
0
14 Jun 2018
Accelerating CNN inference on FPGAs: A Survey
Accelerating CNN inference on FPGAs: A Survey
K. Abdelouahab
Maxime Pelcat
Jocelyn Serot
F. Berry
AI4CE
16
147
0
26 May 2018
EVA$^2$: Exploiting Temporal Redundancy in Live Computer Vision
EVA2^22: Exploiting Temporal Redundancy in Live Computer Vision
Mark Buckler
Philip Bedoukian
Suren Jayasuriya
Adrian Sampson
33
75
0
16 Mar 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
25
1,303
0
12 Mar 2018
The History Began from AlexNet: A Comprehensive Survey on Deep Learning
  Approaches
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Md. Zahangir Alom
T. Taha
C. Yakopcic
Stefan Westberg
P. Sidike
Mst Shamima Nasrin
B. Van Essen
A. Awwal
V. Asari
VLM
23
873
0
03 Mar 2018
Demystifying Parallel and Distributed Deep Learning: An In-Depth
  Concurrency Analysis
Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
Tal Ben-Nun
Torsten Hoefler
GNN
22
701
0
26 Feb 2018
A Scalable Near-Memory Architecture for Training Deep Neural Networks on
  Large In-Memory Datasets
A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets
Fabian Schuiki
Michael Schaffner
Frank K. Gürkaynak
Luca Benini
21
70
0
19 Feb 2018
JointDNN: An Efficient Training and Inference Engine for Intelligent
  Mobile Cloud Computing Services
JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services
Amir Erfan Eshratifar
M. Abrishami
Massoud Pedram
FedML
24
247
0
25 Jan 2018
Design Automation for Binarized Neural Networks: A Quantum Leap
  Opportunity?
Design Automation for Binarized Neural Networks: A Quantum Leap Opportunity?
Manuele Rusci
Lukas Cavigelli
Luca Benini
MQ
16
20
0
21 Nov 2017
Streaming Architecture for Large-Scale Quantized Neural Networks on an
  FPGA-Based Dataflow Platform
Streaming Architecture for Large-Scale Quantized Neural Networks on an FPGA-Based Dataflow Platform
Chaim Baskin
Natan Liss
Evgenii Zheltonozhskii
A. Bronstein
A. Mendelson
GNN
MQ
28
35
0
31 Jul 2017
ShiftCNN: Generalized Low-Precision Architecture for Inference of
  Convolutional Neural Networks
ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks
Denis A. Gudovskiy
Luca Rigazio
MQ
16
52
0
07 Jun 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
15
479
0
24 May 2017
Speeding up Convolutional Neural Networks By Exploiting the Sparsity of
  Rectifier Units
Speeding up Convolutional Neural Networks By Exploiting the Sparsity of Rectifier Units
S. Shi
Xiaowen Chu
15
43
0
25 Apr 2017
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
311
1,047
0
10 Feb 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
101
1,502
0
25 Jan 2017
Previous
1234