ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.09194
  4. Cited By
Sticking the Landing: Simple, Lower-Variance Gradient Estimators for
  Variational Inference

Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference

27 March 2017
Geoffrey Roeder
Yuhuai Wu
David Duvenaud
    BDL
ArXivPDFHTML

Papers citing "Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference"

50 / 59 papers shown
Title
Path Gradients after Flow Matching
Path Gradients after Flow Matching
Lorenz Vaitl
Leon Klein
19
0
0
15 May 2025
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
46
0
0
03 Oct 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
58
0
0
22 Jul 2024
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
54
4
0
30 Jun 2024
Dream-in-Style: Text-to-3D Generation Using Stylized Score Distillation
Dream-in-Style: Text-to-3D Generation Using Stylized Score Distillation
Hubert Kompanowski
Binh-Son Hua
DiffM
64
3
0
05 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
65
1
0
31 May 2024
Fast and Unified Path Gradient Estimators for Normalizing Flows
Fast and Unified Path Gradient Estimators for Normalizing Flows
Lorenz Vaitl
Ludwig Winkler
Lorenz Richter
Pan Kessel
44
4
0
23 Mar 2024
Towards Model-Agnostic Posterior Approximation for Fast and Accurate
  Variational Autoencoders
Towards Model-Agnostic Posterior Approximation for Fast and Accurate Variational Autoencoders
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
DRL
29
0
0
13 Mar 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Stochastic Optimal Control Matching
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
20
7
0
04 Dec 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
Variational Prediction
Variational Prediction
Alexander A. Alemi
Ben Poole
BDL
24
2
0
14 Jul 2023
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
46
1
0
12 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
42
52
0
03 Jul 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
30
18
0
04 Jun 2023
VI-DGP: A variational inference method with deep generative prior for
  solving high-dimensional inverse problems
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
27
2
0
22 Feb 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
46
81
0
02 Nov 2022
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
33
12
0
27 Oct 2022
DreamFusion: Text-to-3D using 2D Diffusion
DreamFusion: Text-to-3D using 2D Diffusion
Ben Poole
Ajay Jain
Jonathan T. Barron
B. Mildenhall
85
2,323
0
29 Sep 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
41
15
0
23 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
Mitigating Modality Collapse in Multimodal VAEs via Impartial
  Optimization
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
Adrián Javaloy
Maryam Meghdadi
Isabel Valera
32
27
0
09 Jun 2022
Variational Sparse Coding with Learned Thresholding
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
36
7
0
07 May 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
32
47
0
08 Mar 2022
Bayesian Nonparametrics for Offline Skill Discovery
Bayesian Nonparametrics for Offline Skill Discovery
Valentin Villecroze
H. Braviner
Panteha Naderian
Chris J. Maddison
G. Loaiza-Ganem
BDL
OffRL
26
8
0
09 Feb 2022
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
49
72
0
06 Dec 2021
Challenging the Semi-Supervised VAE Framework for Text Classification
Challenging the Semi-Supervised VAE Framework for Text Classification
G. Felhi
Joseph Le Roux
Djamé Seddah
BDL
21
2
0
27 Sep 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
32
20
0
21 Jun 2021
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization
Tomas Geffner
Justin Domke
30
9
0
13 May 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
Flexible mean field variational inference using mixtures of
  non-overlapping exponential families
Flexible mean field variational inference using mixtures of non-overlapping exponential families
J. Spence
22
4
0
14 Oct 2020
Controlling the Interaction Between Generation and Inference in
  Semi-Supervised Variational Autoencoders Using Importance Weighting
Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting
G. Felhi
Joseph Leroux
Djamé Seddah
BDL
26
1
0
13 Oct 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
32
25
0
14 Jul 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
13
2
0
04 Jun 2020
Mutual Information Gradient Estimation for Representation Learning
Mutual Information Gradient Estimation for Representation Learning
Liangjiang Wen
Yiji Zhou
Lirong He
Mingyuan Zhou
Zenglin Xu
DRL
SSL
33
27
0
03 May 2020
Estimating Gradients for Discrete Random Variables by Sampling without
  Replacement
Estimating Gradients for Discrete Random Variables by Sampling without Replacement
W. Kool
H. V. Hoof
Max Welling
BDL
31
49
0
14 Feb 2020
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Andres Potapczynski
G. Loaiza-Ganem
John P. Cunningham
32
29
0
19 Dec 2019
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
32
266
0
08 Nov 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
117
25
0
05 Sep 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDL
DRL
21
33
0
26 Aug 2019
Direct Policy Gradients: Direct Optimization of Policies in Discrete
  Action Spaces
Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom
Chris J. Maddison
N. Heess
Tamir Hazan
Daniel Tarlow
22
8
0
14 Jun 2019
Educating Text Autoencoders: Latent Representation Guidance via
  Denoising
Educating Text Autoencoders: Latent Representation Guidance via Denoising
T. Shen
Jonas W. Mueller
Regina Barzilay
Tommi Jaakkola
19
4
0
29 May 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
12
Next