Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.00103
Cited By
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly
1 April 2017
Jiajun Lu
Theerasit Issaranon
David A. Forsyth
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SafetyNet: Detecting and Rejecting Adversarial Examples Robustly"
50 / 73 papers shown
Title
Understanding Deep Learning defenses Against Adversarial Examples Through Visualizations for Dynamic Risk Assessment
Xabier Echeberria-Barrio
Amaia Gil-Lerchundi
Jon Egana-Zubia
Raul Orduna Urrutia
AAML
37
6
0
12 Feb 2024
Adversarial Examples Detection with Enhanced Image Difference Features based on Local Histogram Equalization
Z. Yin
Shaowei Zhu
Han Su
Jianteng Peng
Wanli Lyu
Bin Luo
AAML
31
2
0
08 May 2023
Vertex-based reachability analysis for verifying ReLU deep neural networks
João G. Zago
E. Camponogara
Eric A. Antonelo
AAML
31
2
0
27 Jan 2023
TAD: Transfer Learning-based Multi-Adversarial Detection of Evasion Attacks against Network Intrusion Detection Systems
Islam Debicha
Richard Bauwens
Thibault Debatty
Jean-Michel Dricot
Tayeb Kenaza
Wim Mees
AAML
24
40
0
27 Oct 2022
Secure and Trustworthy Artificial Intelligence-Extended Reality (AI-XR) for Metaverses
Adnan Qayyum
M. A. Butt
Hassan Ali
Muhammad Usman
O. Halabi
Ala I. Al-Fuqaha
Q. Abbasi
Muhammad Ali Imran
Junaid Qadir
32
32
0
24 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
33
5
0
11 Oct 2022
Trace and Detect Adversarial Attacks on CNNs using Feature Response Maps
Mohammadreza Amirian
Friedhelm Schwenker
Thilo Stadelmann
AAML
27
16
0
24 Aug 2022
Threat Assessment in Machine Learning based Systems
L. Tidjon
Foutse Khomh
27
17
0
30 Jun 2022
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
28
0
0
01 Jun 2022
A Tutorial on Adversarial Learning Attacks and Countermeasures
Cato Pauling
Michael Gimson
Muhammed Qaid
Ahmad Kida
Basel Halak
AAML
25
11
0
21 Feb 2022
Adversarial Attacks and Defense Methods for Power Quality Recognition
Jiwei Tian
Buhong Wang
Jing Li
Zhen Wang
Mete Ozay
AAML
26
0
0
11 Feb 2022
Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial Examples Against Traffic Sign Recognition Systems
Wei Jia
Zhaojun Lu
Haichun Zhang
Zhenglin Liu
Jie Wang
Gang Qu
AAML
16
51
0
17 Jan 2022
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
A. Ćiprijanović
Diana Kafkes
Gregory F. Snyder
F. Sánchez
G. Perdue
K. Pedro
Brian D. Nord
Sandeep Madireddy
Stefan M. Wild
AAML
42
15
0
28 Dec 2021
All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines
Yuxuan Zhang
B. Dong
Felix Heide
AAML
26
8
0
16 Dec 2021
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View
Di Jin
Elena Sergeeva
W. Weng
Geeticka Chauhan
Peter Szolovits
OOD
47
55
0
05 Dec 2021
Medical Aegis: Robust adversarial protectors for medical images
Qingsong Yao
Zecheng He
S. Kevin Zhou
AAML
MedIm
30
2
0
22 Nov 2021
Mitigating Black-Box Adversarial Attacks via Output Noise Perturbation
Manjushree B. Aithal
Xiaohua Li
AAML
60
6
0
30 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
40
16
0
20 Sep 2021
Detecting Textual Adversarial Examples through Randomized Substitution and Vote
Xiaosen Wang
Yifeng Xiong
Kun He
AAML
27
11
0
13 Sep 2021
Optical Adversarial Attack
Abhiram Gnanasambandam
A. Sherman
Stanley H. Chan
AAML
35
65
0
13 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
32
15
0
13 Aug 2021
Inconspicuous Adversarial Patches for Fooling Image Recognition Systems on Mobile Devices
Tao Bai
Jinqi Luo
Jun Zhao
AAML
31
30
0
29 Jun 2021
We Can Always Catch You: Detecting Adversarial Patched Objects WITH or WITHOUT Signature
Binxiu Liang
Jiachun Li
Jianjun Huang
AAML
33
12
0
09 Jun 2021
MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
Zhikai Chen
Lingxi Xie
Shanmin Pang
Yong He
Bo Zhang
AAML
36
32
0
26 Mar 2021
WaveGuard: Understanding and Mitigating Audio Adversarial Examples
Shehzeen Samarah Hussain
Paarth Neekhara
Shlomo Dubnov
Julian McAuley
F. Koushanfar
AAML
33
71
0
04 Mar 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
38
133
0
14 Feb 2021
Generating Adversarial yet Inconspicuous Patches with a Single Image
Jinqi Luo
Tao Bai
Jun Zhao
AAML
27
6
0
21 Sep 2020
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
43
62
0
11 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
33
157
0
08 Sep 2020
Defending Adversarial Examples via DNN Bottleneck Reinforcement
Wenqing Liu
Miaojing Shi
Teddy Furon
Li Li
AAML
26
8
0
12 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
29
73
0
07 Aug 2020
Cassandra: Detecting Trojaned Networks from Adversarial Perturbations
Xiaoyu Zhang
Ajmal Mian
Rohit Gupta
Nazanin Rahnavard
M. Shah
AAML
34
26
0
28 Jul 2020
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers
Yuzhen Ding
Nupur Thakur
Baoxin Li
AAML
24
3
0
20 Jul 2020
Exploring the role of Input and Output Layers of a Deep Neural Network in Adversarial Defense
Jay N. Paranjape
R. Dubey
Vijendran V. Gopalan
AAML
21
2
0
02 Jun 2020
Few-Shot Open-Set Recognition using Meta-Learning
Bo Liu
Hao Kang
Haoxiang Li
G. Hua
Nuno Vasconcelos
BDL
EDL
28
89
0
27 May 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
Towards Robust Classification with Image Quality Assessment
Yeli Feng
Yiyu Cai
19
0
0
14 Apr 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Toward Adversarial Robustness via Semi-supervised Robust Training
Yiming Li
Baoyuan Wu
Yan Feng
Yanbo Fan
Yong Jiang
Zhifeng Li
Shutao Xia
AAML
87
13
0
16 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
Utilizing Network Properties to Detect Erroneous Inputs
Matt Gorbett
Nathaniel Blanchard
AAML
23
6
0
28 Feb 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
36
38
0
26 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
30
0
0
25 Feb 2020
Attacking Optical Character Recognition (OCR) Systems with Adversarial Watermarks
Lu Chen
Wenyuan Xu
AAML
24
21
0
08 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
22
68
0
01 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
27
187
0
29 May 2019
ROSA: Robust Salient Object Detection against Adversarial Attacks
Haofeng Li
Guanbin Li
Yizhou Yu
AAML
13
28
0
09 May 2019
1
2
Next